実数全体について定義された関数f(x)に対して、すべてのxについてf(x+p)=f(x)を満たす正の数pがあるとき、f(x)はpを一つの周期にもつ周期関数であるという。f(x)が一つの周期関数であるとき、周期はたくさんあるが、f(x)が定数でない関数で、ある点で連続ならば、周期のうちに最小の数があり、他の周期はこれの自然数倍となる。この最小の周期をf(x)の基本周期という。周期関数の代表的なものは三角関数である。sinx, cosxは2πを基本周期とする。tanxの基本周期はπである。一般の周期関数は、適当な条件のもとで、フーリエ級数として、sin, cosを用いて表すことができる。
複素平面上でも同様に、周期関数を定義することができる。定数でない関数f(z)に対して、すべてのzについて、f(z+ω)=f(z)を満たすω≠0があるとき、f(z)はωを一つの周期とする周期関数であるという。f(z)が一つの周期関数であるとき、f(z)の周期全体は、複素数の加法に関して群をつくる。f(z)がある点で連続ならば、次の二つの場合がおこる。(1)あるω1≠0があって、周期はすべてω1の整数倍になる。(2)あるω1、ω2があって、ω1、ω2の比は実数でなく、かつ周期はすべてn1ω1+n2ω2(n1、n2は整数)と表すことができる。
(1)の場合は単一周期関数であるという。ezはその代表的な例で、2πiを基本周期とする。(2)の場合は二重周期関数であるという。二重周期を有する有理形関数を楕円関数(だえんかんすう)という。これについては、19世紀以来、非常に詳しい研究がなされ、代数関数論のなかの重要な話題である。
[竹之内脩]
実数xの関数sinxはsin(x+2π)=sinxという性質がある。すなわち,xが2πだけ変化するごとにsin xは同じ値をとるので,xの変化によって関数sin xは周期的に変化する。このように一般に関数f(x)に対して一つの0でない定数ωがあって恒等的にf(x+ω)=f(x)が成立するときに,関数f(x)は周期関数であるといい,ωをその周期という。実変数の周期関数には,正の周期の最小のものがある。それを基本周期という。例えばsin x,cos xの基本周期は2πであり,sin 2x,tan xの基本周期はπである。関数f1(x),f2(x)の周期がそれぞれω1,ω2のとき,f1(x)+f2(x)は周期の比ω1/ω2が有理数ならば周期関数であり,無理数ならば周期関数でない。例えばsin 2x+sin 3xは周期4/5πの周期関数であるが,sin x+sin \(\sqrt{2}\)xは周期関数でない。複素変数の周期関数f(z)も同様に定義する。この場合は,ω1,……,ωnが周期であって任意の周期がm1ω1+……+mnωn(m1,……,mnは整数)と一意的に表されるとき,ω1,……,ωnを基本周期(の組)という。例えばezは2πiを基本周期とする。一つの複素変数の1価有理型関数は,定数でないかぎり,二つより多くの独立な基本周期をもたない。二つの独立な基本周期をもつ1価有理型関数は楕円関数と呼ばれる。
→概周期関数
執筆者:伊藤 清三
出典 株式会社平凡社「改訂新版 世界大百科事典」改訂新版 世界大百科事典について 情報
出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報
東海沖から九州沖の海底に延びる溝状の地形(トラフ)沿いで、巨大地震発生の可能性が相対的に高まった場合に気象庁が発表する。2019年に運用が始まった。想定震源域でマグニチュード(M)6・8以上の地震が...
12/17 日本大百科全書(ニッポニカ)を更新
11/21 日本大百科全書(ニッポニカ)を更新
10/29 小学館の図鑑NEO[新版]動物を追加
10/22 デジタル大辞泉を更新
10/22 デジタル大辞泉プラスを更新