精選版 日本国語大辞典 「時計」の意味・読み・例文・類語
出典 精選版 日本国語大辞典精選版 日本国語大辞典について 情報
出典 精選版 日本国語大辞典精選版 日本国語大辞典について 情報
時刻の指示、あるいは時間を測定する装置を時計という。広義には太陽や恒星の位置から時刻を決定する日時計、星時計、アストロラーベ(おもに航海用に使われた天体観測儀。現代の六分儀にあたるもの)、子午儀(子午線通過時刻を観測する時計)、写真天頂筒なども含むが、一般には水や砂などの規則的な流れ、振り子、てんぷ(調速装置)、音叉(おんさ)、水晶片・原子の振動などのように、等しい時間間隔で繰り返される周期現象を利用して時間を計る装置をいう。
[元持邦之・久保田浩司]
古代人は昼夜の繰り返しによって日を数え、暦をつくり、また影の変化によって時の経過を計った。最初の時計は1本の棒を地上に立てたグノモンgnomon(ギリシア語)である。古代エジプトではオベリスクがグノモンとして使われていた。指針はやがて地軸に平行に傾けられ、1年の間、影の長さは変化しても方向は変わらないように改良された。これが日時計sundialである。日時計は初めバビロニア、エジプトでつくられ、しだいに東西に伝わったといわれる。しかし日時計は夜間、曇天時には使用できず、時間の細分には適していなかったため、この欠点のない水の滴りを利用した水時計のクレプシドラclepsydra(ギリシア語で水泥棒の意)が考案された。古代エジプトではすでに1年を365日とする暦を用いており、紀元前1550年ごろにはこの種の時計によって昼夜を各12等分していたことが知られている。その後、水を砂に置き換えた砂時計、火時計(ろうそく、ランプ、火縄、香(こう)時計)などが考案され、それぞれの特徴によって近世までも用いられた。しかしこれらの時計は精度も劣り、つねに日時計と見比べられながらある時間を等分する、あくまでも補助的な装置であった。地上に立てた棒の影が最短となり、翌日ふたたび同じ状態になるまでの時間が真太陽日(しんたいようじつ)であるが、この真太陽日の1日の長さは1年を通じてかなり変化する。この不便をなくすため、紀元後18世紀中ごろから19世紀末にかけて、1年を通じての平均をとって平均太陽日を定め、これを24等分したものを時hour、時を60等分して分minute(時の細分の意)、分を60等分して秒second(第二の細分の意)とする制度がヨーロッパの先進国で始まった。
1927年水晶時計が出現し、しだいに精度が向上すると、それまで最高の精度をもつ時計であった地球自転速度(精度プラスマイナス1億分の5)の不規則性が発見され、これが正しい時計の基準にならないことが明らかとなった。このため時間の単位である「秒」を再定義することになった。1956年国際度量衡会議総会は、「1秒は、1900年1月0日12時(暦表時)の時点で測った1太陽年の3155万6925.9747分の1」とした(地球の公転周期に基づく定義。1960年正式採用)。さらに同会議総会は、精度をより高くするため、1967年に「1秒は、セシウム133原子の基底状態の二つの超微細準位間の遷移に対応する放射の91億9263万1770周期の継続時間である」と再定義した。すなわち、セシウム133が91億9263万1770回振動する時間を1秒とした(セシウム原子の振動数に基づく定義)。このように定義された秒により刻まれる時刻を原子時という。原子時は確定世界時(各天文台の世界時の平均)との時刻差がプラスマイナス0.9秒を超えないように管理されている。この調整は1年の定められた時刻に1秒の閏(うるう)秒を挿入または差し引くことにより行われる。1977年以降は地球のジオイド面上のセシウム133を基準としている。
[元持邦之・久保田浩司]
機械時計の発明は1300年前後であろうといわれる。14世紀になると北部イタリアを中心にヨーロッパの主要都市は、時打ち装置をもつ公共的な塔時計を競って設置した。パリの最高裁判所にある時計は、1370年ドイツ人ド・ビックHenri de Vicがフランスのシャルル5世のためにつくった現存最古の時計として名高い。またイタリアのデ・ドンディGiovanni de' Dondi(1318―1389)の作製した天文時計、高さ4.6フィート(約1.4メートル)の置き時計は、現存してはいないが1364年に書かれた詳細な記録が残っており、1960年その正確な複製品がつくられアメリカのスミソニアン博物館に所蔵されている。当時の時計構造は、重錘(じゅうすい)の力で歯車を回転させ、冠形脱進機に慣性の大きな棒てんぷをかみ合わせて軸の回転を抑制する方式であった。棒てんぷ自身は現在の振り子やてんぷのように等時性をもった振動を行わないため、時計の狂いは1日に30分にも及んだ。このため当時の時計は時針1本だけで、目で眺めるものではなく、鐘で時刻を知らせるものであった。14世紀につくられた大部分の時計には、いわゆる文字板がない。クロックの語源は鐘であり、一般市民は鐘の音にあわせて生活を営むようになり、これまでの不定時法にかわって、1日を24等分して時を刻む定時法が浸透した。これら公共時計がそのまま室内用の大きさに小型化されたのは14世紀末であるが、数はきわめて少なかった。一般の富裕な家庭にみられるようになったのは16世紀になってからのことである。
ぜんまいの発明によって卓上時計がつくられたのは15世紀前半で、やはりイタリアとの説が強い。しかし時計製造の中心は15世紀末には南ドイツに、少し遅れてフランスのブロアへ移っていった。ニュルンベルクの錠前師ヘンラインPeter Henlein(1479/1480―1542)が1510年ごろ、懐中時計の前身である携帯時計をつくったことはよく知られている。ぜんまい時計の最大の問題点は、巻き締め状態によってぜんまい力が大きく変動し時計を狂わすことであった。このため、発明者は不明であるがレオナルド・ダ・ビンチの手稿にみられる均力車fusée(フランス語)やスタックフリードstack freed装置が考えられ、16~17世紀の携帯時計にはそのいずれかが用いられている。初期の携帯時計は分厚く、首または胸に下げられ、時打ち装置を備えたものが多く、クロック・ウォッチとよばれた。1600年前後には十字形、頭蓋(ずがい)骨、動物、果物、星、花といった珍奇な形の時計が多くつくられ、その後、今日のような丸形に落ち着いた。ケースには貴金属やエナメルが用いられ、美しいエナメル画はウォッチを美術工芸品、宝飾品とした。
1583年ガリレイによって振り子の等時性が発見されると、オランダの科学者ホイヘンスはこれを時計に利用して1657年に最初の振り子時計として完成させ、さらに1675年てんぷと渦巻状のひげぜんまいを組み合わせた調速機を発明した。この等時性をもつ調速機の発明は時計の精度を一変させ、高精度化への道を開いた。
日本への機械時計の伝来は、1551年(天文20)宣教師フランシスコ・ザビエルが、周防(すおう)の領主大内義隆(よしたか)に布教の許可を願い出た際に献上した時計が始まりといわれる。しかしこの時計は焼失し、現在もっとも古いものは静岡県の久能山(くのうざん)東照宮博物館にある徳川家康愛用の置き時計(重要文化財)で、スペイン国王フェリペ2世の御用時計師ハンス・デ・エバロHans de Evaloが1581年マドリードでつくったものである。キリスト教の普及とともに教学機関が設けられて時計製作技術の習得が行われ、1639年(寛永16)の徳川幕府鎖国政策強化にもかかわらず国内の時計製作は盛んになり、「和時計」とよばれる特殊な機械時計が発達した。
17世紀前半のオランダの繁栄後、世界経済の中心がイギリスに移行するにつれ、時計に関する発明もイギリスで盛んになった。16世紀以来、スペイン、オランダ、イギリス、フランスなどの海運国が「経度の発見」を国家的課題とし、最高精度の可搬時計マリンクロノメーターの製作を奨励したこともあって、ロンドンで働いていたスイス人ファティオNicolas Fatio(1664―1753)のルビー材穴あけ方法の発明(1704)に基づく宝石軸受の採用、17世紀のロバート・フック、クレマンWilliam Clément(1638?―1704)に続いてトンピオンThomas Tompion(1639―1713)、グラハムGeorge Graham(1673―1751)、マッジThomas Mudge(1715―1794)などの脱進機に関する発明、グラハムの水銀補正振り子など、18世紀には主要な発明が相次ぎ、時計の構造は大いに改良された。また機械の小型、薄型化が進み、多くの機能が付け加えられた。
19世紀になるとしだいに工場が設立され、個人による製作は姿を消した。これまで世界第一の時計産業国であったイギリスは、製造機械化への無関心が災いして1840年ごろから衰退し、かわってスイスの台頭が始まった。20世紀初期に出現した腕時計は第一次世界大戦後大いに流行し、1924年にはイギリスのハーウッドJohn Harwood(1893―1964)が自動巻き腕時計の特許を得て製造を始めた。時計の精度向上について偉大な貢献をしたのはスイス生まれの金属学者ギヨームである。ギヨームは、ニッケル鉄合金で、温度変化に対して伸縮の少ないアンバーと、弾性変化の少ないエリンバーの発明によって1920年ノーベル物理学賞を受けた。アンバーは振り子の棹(さお)などに、エリンバーは、てんぷのひげぜんまいに用いられ、時計の実用精度を著しく高めた。18世紀が構造・機能についての改良の時代、19世紀が製造法の改革・進歩の時代、そして20世紀は時計産業にとって機械時計の精度の完成期、さらに革命的な電気・電子時計への転換の時代となった。
[元持邦之・久保田浩司]
電気を時計に応用したのは1830年イタリア人ツァンボニZamboniといわれるが、電気時計発展への道を開いたのはイギリスのベインAlexander Bain(1810―1877)とされている。ベインは1840年電気信号によって子時計を動かすことを提唱し、翌年機械時計の振り子を利用し、接点によって一振動ごとにインパルスを発生させ、子時計を動かすことに成功した。続いてヒップMatthias Hipp(1813―1893)、ルモワンA. Lemoineなどが電磁式振り子駆動の単独時計を、1856年にはスイス生まれのブレゲーLouis Breguet(1804―1883)が電気巻き時計を、また1918年ごろアメリカのワーレンHenry Ellis Warrenが交流同期モーターを使用した時計を、1927年にはマリソンWarren A. Marrison(1896―1980)が水晶時計を、第二次世界大戦後の1949年にはライオンズHarold Lyons(1913―1998)がアンモニア分子の振動を利用した原子時計をつくった。
1948年にベル研究所のブラッテン、ショックレー、バーディーンの3人によって開発されたトランジスタは、微弱な電流で大きく増幅させる性能をもち、電気接点としても有用な性能をもっているため、1954年ごろから電子機器を発達させ、時計にも用いられ始めた。大物時計と並行して電池腕時計の研究も続けられ、1952年アメリカのエルジン社とフランスのリップ社協同のてんぷ式ウォッチのプロトタイプが発表され、これに続いて、てんぷ式、音叉式の電池腕時計がアメリカ、フランス、スイス、日本で製造されるようになった。1969年(昭和44)には服部(はっとり)時計店(のちセイコー)が世界最初のアナログ表示水晶腕時計を、1972年にはアメリカの数社がデジタル式を発売した。また1993年(平成5)には送信所の電波塔から発信される標準電波を受信して時刻を示す電波腕時計が日本国内で発売された(2003年以降、小型化されたアンテナ内蔵の電波腕時計を発売)。エレクトロニクスの急速な進歩によって、高密度の集積回路(IC)を組み込み、精度、機能に優れ、小さく薄く、かつ低コストになった水晶時計は、短期間に機械式に置き換わった。とくにデジタル腕時計の多機能化、低価格化の進展は、ウォッチの性格を携帯情報機器に変え、その需要構造を大きく変えた。
[元持邦之・久保田浩司]
時計の種類・分類方法は多種多様で、時刻指示機と時間測定器、また源振部の制御方式による電気、電子、機械時計の区分なども広く用いられる。しかしウォッチとクロックの区分がもっとも一般的であろう。前者は通常、身に着けて使用される時計、後者は一般に定位置で使用される時計をいう。実際にはケースのつかないムーブメントmovement(時計の機械部分)の状態で取引される場合も多いので、国によってはムーブメントの直径や厚み、あるいは容積によってウォッチのムーブメントを区分している。
[元持邦之・久保田浩司]
懐中時計、腕時計、ペンダント時計、指輪時計、ストップウォッチなどがあり、ペンやライターなどとの複合製品も多くみられる。一方、携帯電話、歩度計(万歩計)などのような身の回り品にデジタル時刻表示がみられ、時計がわりに使用されるようにもなった。
このほかの分類法としては、大きさ(ムーブメントの直径を1型(2.255ミリメートル)の倍数でよぶ。たとえば直径22.5ミリメートルなら10型)、石数、外装材料(金側(がわ)、ステンレス側など)、表示法(アナログ、デジタル)、脱進機(レバーウォッチ、ピンレバーウォッチ)、調速機(振り子、てんぷ、音叉、水晶など)などによって分ける方法がある。機能や品質表示的な呼称による分け方もあり、クロノグラフ、クロノメーター、自動巻き、カレンダー付き、目覚し、視覚障害者用、防水、耐衝撃、耐磁、夜光時計などがそれである。以下、そのうちでおもなものについて述べる。
(1)レバーウォッチ レバー脱進機すなわちアンクルのつめ石が貴石(ルビー)でできた脱進機をもつウォッチ。
(2)ピンレバーウォッチ アンクルのつめ石を鉄ピンにかえたもの。ロスコフともよばれる。
(3)耐磁時計 時計は鉄部品を数多く使用しているので、磁力線のあるところに近づけると歩度に狂いを生じる。磁化によってもっとも大きな影響を受ける部品はひげぜんまいであるが、現在の製品はほとんどひげ材料に非磁性の特殊合金を使用している。特殊なものとしては、ムーブメントを透磁性の高い材料で囲み、外部の磁力線から防護したものがある。国際的な基準(ISO規格)によって、時計を4800アンペア毎メートルの磁界中に所定の姿勢でさらし、取り出したのち、試験前後の歩度の差が機械式小型時計で1日当り45秒、中型で30秒、水晶時計で1.5秒以内のものだけに耐磁antimagneticの表示が許される。
(4)耐衝撃腕時計 国際的な基準によって、1メートルの高さから硬質材の床上に落としても、止まったり大きな狂いや損傷を生じたりしない腕時計に、耐衝撃shock-resistantの呼称が許される。
(5)防水時計 側の内部に水が浸入しないような構造の時計をいい、国際的な基準によって、少なくとも3バール(約3気圧)の圧力のもとで5分間程度水の浸入に耐えられなければ防水water-resistantの表示は許されない。また潜水時計は、少なくとも100メートルの水深に耐えねばならず、それ以上の製品についても国際的な規格がある。
(6)夜光時計 暗所で時刻が読めるように文字板や針に発光塗料を塗った時計。塗料に用いられる放射性同位元素の放射能が人体に影響を及ぼすため、時計に使用してよい核種(トリチウム、プロメチウム、ラジウムの3種に限る)とその全放射能の最大許容量は国際規格によって定められている。
[元持邦之・久保田浩司]
置き時計、掛け時計、設備時計(塔時計、公衆時計)、プログラム時計、マリンクロノメーターなどがある。置き時計にはロングケースクロック(通称グランドファーザークロック)のように床に直接据えられる大型の重錘式振り子時計から、旅行用目覚し時計のようにポケットに収まる小型のものまである。20世紀の中ごろまでは最高の精度をもつ時計は振り子式の天文時計であった。これらのなかではとくにリフラRiflerとショルトShorttの時計(誤差1日当り0.01秒)が有名である。しかし現在では天文時計は原子時計に、マリンクロノメーターは水晶時計に置き換わっている。機械式から電子式への移行は一般家庭用時計でも急速に進み、電子化への先導国である日本のクロック生産中の機械式のシェアはほんのわずかとなっている。一般に電気・電子時計は単独時計、および外部からの信号によって振動周期や指針が制御されるものに大別される。前者には振り子、てんぷが直接電磁的に駆動される電磁時計、機械時計のぜんまいなどを電気で巻き上げる電気巻き時計などが、後者には親時計からの信号を得て動く子時計、交流同期時計などがある。
[元持邦之・久保田浩司]
時計の機構は次の4装置から構成される。
(1)時間の間隔をつくりだす装置 源振部、調速機、共振器などとよばれる。時計の精度はこの部分によってほぼ決まる。振り子、てんぷ、音叉、水晶振動子、原子などがこれである。
(2)源振部が決める時間間隔を単位時間に変換する装置 分、秒、または秒を分割した間隔に変換する。機械時計では脱進機を構成するアンクルと、がんぎ車で歯車の回転速度を規制する。電子時計ではインパルスカウンターや周波数逓降器(ていこうき)などがこれである。
(3)表示装置と外装 文字板と針によるアナログ表示と、ローマ字・数字表示のデジタル表示がある。
(4)動力装置 重錘、ぜんまい、電池、交流電源などがある。
[元持邦之・久保田浩司]
機械時計が14世紀北部イタリアに出現したのち、時計の製造地域はイタリアからドイツ南部、フランス、オランダ、イギリス、スイスと移り変わったが、きわめて高度な技術と熟練作業者を必要とするため、その後アメリカ、日本、旧ソ連が加わった程度で、生産国はごく少数に限られていた。1930年代にはスイス(ウォッチ)、ドイツ(クロック)、アメリカ(ウォッチとクロック)の3国で世界の時計の90%以上を生産、また水晶時計化の始まる直前の1970年にはスイス、日本、旧ソ連、アメリカ、フランス、旧西ドイツの6国で90%を生産していた。しかしエレクトロニクスの急速な発展によって時計も電子化という一大変革の時代を迎えることになった。これは単なる技術革新にとどまらず、産業構造を変え、生産国の地図を大幅に塗り替えた。主要な時計メーカーは国際的コスト競争、輸出トラブル回避のため海外生産を行う体制をとったこともあって錯綜(さくそう)してはいるが、時計生産の中心地はすでに欧米から日本をはじめとするアジア地域(ウォッチは日本と、香港(ホンコン)を含む中国、クロックはこれに台湾などが加わった一部アジア諸国地域)に移っている。2010年(平成22)の時計の世界生産個数(推定)はウォッチ10億5000万個、クロック4億7500万個である。
[元持邦之・久保田浩司]
大別して二つの型がある。その一つは大工場で部品から完成品までを一貫生産する方式、そして他の一つはそれぞれの部品を買い集め、家内工業的に時計を組み立てる組立て工場方式である。アメリカ、日本、旧ソ連など生産国としての歴史が比較的新しい国は前者に、スイス、ドイツ、フランスなど歴史の古い生産国は後者に属していた。しかし、新製品の開発経費の増大、量産によるコスト低減、マーケティング、さらに近年の製品における設計と製造設備との不可分な関係などから、後者に属するヨーロッパのメーカーは、日本の時計輸出が盛んになってきた1960年代後半以降、国際競争力のある企業規模への脱皮を目標に合併を余儀なくされた。
[元持邦之・久保田浩司]
フランスにおける宗教戦争(カトリック対プロテスタントの抗争)によって、フランスからジュネーブなどに逃れてきた時計師たちが技術を伝え、16世紀後半に時計産業が盛んになった。18世紀に入って時計作りはジュラ山脈沿いに広がり、ジュラ山地農家では、副業として農閑期に時計製造を習得するようになり、部品製造から組立てまでを行う、家内工業として発達した。スイスメーカーは第一次世界大戦後に、腕時計の流行にいち早く対応して、1929年の世界大恐慌ののち、連邦政府の保護のもとに組織化を進めた。時計会議所の傘下に時計製造者連盟(FH)、時計部品製造者組合連合会(UBAH)を設け、1931年には時計産業最大のコンツェルン・スイス時計産業総合株式会社(ASUAG)を設立、時計の主要部品エボーシュ(未完成品ムーブメント、あるいは部品一式)、てんぷ、ひげぜんまい、脱進機等のメーカーをそれぞれグループ化して統制し、過剰生産防止、外国時計産業発展防止活動、価格・賃金の統制、情報収集などを行った。スイスは多くの熟練労働者、精度の高い時計用工作機械による技術的優越とこの統制組織によって、その後約40年間世界ウォッチ市場を独占した。とくに1940~1950年代にはスイスは世界で生産される数量の過半を生産し、この時期、時計の輸出額はスイス全輸出額の20~30%を占めた。しかしその後、日本、アメリカ、旧ソ連等の発展によってシェアを落とし、また伝統的産業構造と技術に頼りすぎて、新技術、たとえば水晶ウォッチなどの開発に出遅れ、それまでスイス製品の約半数を占めていたピンレバー(廉価なロスコフウォッチ。簡素な機構の時計)のシェアを香港製デジタルウォッチに奪われた。1980年代の生産は機械式の全盛期の1970年に比べて半減し苦境に陥ったが、その後組織再編、高価格化に力を入れ、1990年代以降は売上高は立ち直り大幅な挽回に成功した。現在のスイスは、その雇用人口は全盛期の約半数に減少したが、伝統的な主力品種である機械式・工芸的高級品の分野では繁栄している。
[元持邦之・久保田浩司]
1960年代には低価格のウォッチ用ケース、文字板、バンドを生産し、数社がおもにスイスからムーブメントやばら部品セットを輸入し完成品を組み立てているにすぎなかった。1970年代になって国際分業化が始まり、日本、スイスのメーカーが進出し、デジタルウォッチの出現後はアメリカ企業との結び付きを強め、1970年代後半から生産が急増した。また中国への委託加工も始まり、1980年代初めには輸出、輸入(大部分を再輸出)で世界の時計の過半数を集配する巨大な流通センターに成長した。デジタルウォッチは1972年初めてアメリカで発売されて国内にブームを巻き起こしたが、大手半導体メーカーの相次ぐ参入によって企業間競争が激化し、低労賃で労働力の豊富な香港から製品を輸入するメーカーが増えた。反面、アメリカの製造業者はこの香港の安値に対抗できずに倒産か撤退に追い込まれた。
香港時計産業の特徴は、生産国からウォッチやムーブメント、また組立てセットを輸入し、ケース付け、バンド付けなど付加価値をつけて輸出するか、組立てだけを行うかのどちらかで、部品からの一貫生産にこだわらなかった点にある。研究・開発費の不要な組立てメーカーに徹したこと、たまたま外装産業があったこと、自由港としての利点を十分に生かしたことが今日の成長につながった。デジタルウォッチが急増した1980年代には生産個数で世界一となったこともあったが、そのころから中国への委託加工を大幅に伸ばしていた。香港の中国返還後は委託加工にとどまらず中国内地産業との関係を急速に強めている。
[元持邦之]
1873年(明治6)の改暦、すなわち旧暦から欧米に一致する新暦への改訂の後、東京、名古屋などの和時計製造は新暦の国産掛け時計企業として再出発し製造が始まった。さらに19世紀末には懐中時計・置き時計、そして1913年(大正2)には腕時計の製造が始まり、第一次世界大戦の好況によって順調に発展した。しかし第二次世界大戦により、軍用時計および時限信管(発射後、あらかじめセットしておいた時間が経過したら爆発する信管)など以外、民間需要の時計生産は停止され、さらに日本本土への空襲によって、1940年代の時計製造は停滞し壊滅した。1945年(昭和20)の平和回復後、時計の需要は復活し、生産は活発化した。これに対し工作機械・工具類、各種原材料への急速な研究開発は時計産業を大きく支援した。また、永世中立国スイスの中核産業がウォッチであるとのイメージから、日本も平和国家として時計生産に力を入れようという考えは、時計業界のみならず、官庁・大学・研究機関も力を入れる刺激となった。その結果、時計理論・材料・構成部品・工作機械・計測器等の研究開発に少なからずプラスとなった。このようにして品質の優れた中級品の量産が進み、1954年には第二次世界大戦前の時計最高生産量467万個(1937)を超えた。
1964年、東京オリンピックが開催され、この機会に日本の企業は各種の競技時計および電子式計時装置の開発に力を注ぎ、その実力を発揮し、これ以後、国際競技で大いに活躍した。これを契機に日本製時計の知名度は向上し、商品としてアメリカ、東南アジア等世界市場に地位を築いた。たとえば自動巻腕時計では1965年以降、世界生産量の50~70%を占め、毎年次にそのシェアを伸ばした。日本は1970年代に始まった水晶ウォッチへの技術開発でも、デジタル、アナログの両方式に高度な技術開発を進め、市場需要をとらえる成長を遂げた。日本製品の信頼性、商品性は諸外国製を上回る信用を得、販売数・売上金額とも、しだいに機械式以上に成長した。ウォッチは1980年にスイスを抜いて世界一の時計生産国となった。アメリカは、もっとも早く、1970年に機械部品なしに時を刻むデジタルLED(発光ダイオード)電子ウォッチで先行したが、すぐにLCD(液晶)式に移行した。これに対し日本の各メーカーは、まずアナログ水晶ウォッチを中心に、着実に商品化を進め、次いでデジタルウォッチでも当初から液晶表示式・多機能商品で世界市場の獲得に成功した。2010年(平成22)の日本の時計メーカーによるウォッチ完成品の総出荷数は6590万個(水晶アナログ66%、水晶デジタル30%、機械式4%)、完成品とムーブメントの合計出荷数は6億7300万個(世界の64%)。同クロック完成品の総出荷数は1730万個(置時計59%、掛時計24%、計器板ほか17%)、完成品とムーブメントの合計出荷数は2300万個(世界の5%)である(日本時計協会調べ)。
[元持邦之・久保田浩司]
ウォッチおよびクロックの世界需要は平均年4~6%のピッチで着実に伸びてきた。ウォッチは1980年代には生産地の移動、デジタル低価格品の供給過剰で平均年11%といった異常な増加を続けたが、1990年代初めには落ち着きを取り戻した。クロックは1997年(4億4000万個)以降低迷し、2002年には3億2000万個まで落ち込んだが、その後は微増傾向にある。一方、ウォッチの消費面ではアメリカとヨーロッパの割合が高いが、この地域における所有率は飽和状態にあることから、今後の伸長は携帯情報機器としてのさらなる広がり、ファッション性のいっそうの向上、開発途上国における需要の喚起にかかっている。2010年の世界生産数はウォッチ10億5000万個(水晶アナログ80%、水晶デジタル18%、機械2%)、クロック4億7500万個である(日本時計協会推定値)。
[元持邦之・久保田浩司]
『山口隆二著『日本の時計――徳川時代の和時計の一研究』(1950・日本評論社)』▽『J・グロスマン、H・グロスマン著、青木保訳編『理論時計学』(1958・日刊工業新聞社)』▽『上田弘之編『時の科学』(1966・コロナ社)』▽『小林敏夫著『基礎時計読本』改訂増補版(1971・グノモン社)』▽『株式会社河合企画室時計史年表編纂室編『時計史年表』(1973・河合企画室)』▽『G・H・バイリー他著、大西平三訳『図説時計大鑑』(1980・雄山閣出版)』▽『高林兵衛著『時計発達史』(1924・東洋出版社/復刻版・1985・有明書房)』▽『日本経営史研究所・セイコー時計資料館編、内田星美著『時計工業の発達』(1985・服部セイコー)』▽『小島健司著『明治の時計』(1988・校倉書房)』▽『織田一朗著『クオーツが変えた「時」の世界』(1988・日本工業新聞社)』▽『香山知子著『ウオッチ・アド――広告に見るアメリカ時計産業興亡の軌跡 1905―1962』(1990・グリーンアロー出版社)』▽『清水修著『時計』(1991・日本経済新聞社)』▽『G・J・ウィットロウ著、柳瀬睦男・熊倉功二訳『時間――その性質』(1993・法政大学出版局)』▽『A・G・スミス著、渡会和子訳『時間』(1993・ほるぷ出版)』▽『世界の腕時計編集部編『国産時計博物館』(1994・ワールドフォトプレス)』▽『長尾善夫他著『国産腕時計』1~9、11、12巻(1996~2002・トンボ出版)』▽『織田一朗著『時計にはなぜ誤差が出てくるのか』(1998・中央書院)』▽『上野秀恒著『「時」の表情――街の時計で辿る日本の歴史と文化』(1999・クロック文化研究所、NTTメディアスコープ発売)』▽『グッズプレス編集部編『THE SEIKO BOOK 時の革新者――セイコー腕時計の軌跡』(1999・徳間書店)』▽『タスクフォース1編、織田一朗著『時と時計の百科事典――時間と時計に関する疑問を解く』(1999・グリーンアロー出版社)』▽『織田一朗著『時計と人間――そのウォンツと技術』(1999・裳華房)』▽『久下晴夫著『スイス時計交流記――時計業界の不思議と思い出の時計を語る』(1999・グリーンアロー出版社)』▽『戸田如彦著『アンティーク掛時計』(2001・トンボ出版)』▽『関口直甫著『日時計――その原理と作り方』(2001・恒星社厚生閣)』▽『若山三郎著『時計王――セイコー王国を築いた男』(2002・学習研究社)』▽『有澤隆著、嶋田敦之・吉岡宏写真『図説 時計の歴史』(2006・河出書房新社)』▽『流郷貞夫著『精工舎 懐中時計図鑑』(2009・溪水社)』▽『山口隆二著『時計』(岩波新書)』
出典 株式会社平凡社百科事典マイペディアについて 情報
出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報
出典 株式会社平凡社世界大百科事典 第2版について 情報
… こうした点を振り返ると,時間の問題は,およそ人間と世界にかかわるあらゆる問題の起点であり,一方で不易の問い(時間とは何か,過去,未来,現在の区別とは何か,時間は実体的存在であるか,など)が繰り返し登場する主題であると同時に,他方で,優れて現代的,社会的な問題を生む宝庫でもあると言えよう。空間暦(こよみ)時刻【村上 陽一郎】
【時間認識の文化的差異】
われわれは暦や時計によって経験の流れを〈勤務時間〉と〈休み〉,あるいは〈播種期〉〈除草期〉〈収穫期〉といった意味をもつ単位に分割している。時間は,分割された意味単位とそれらのつながりとして社会的に形象化される。…
…したがってこのようにして定めた時間は季節によって異なるばかりではなく,1日でも昼夜でその長さが異なっていた。きわめて不便ではあるが,正確な時計がない時代,実生活はこの時法によらざるを得なかった。これを不定時法と呼ぶ。…
…何が精密機械であるかについては必ずしも明確な分類はない。通産省の《機械統計年報》では計測機器,光学機械器具,時計の製造業を精密機械工業としている。また総務庁統計局の《日本標準産業分類》(1993改訂)では計量器・測定器・分析機器・試験機,測量機械器具,医療用機械器具・医療用品,理化学機械器具,光学機械器具・レンズ,眼鏡,時計・同部品を製造する産業を中分類の精密機械器具製造業としている。…
※「時計」について言及している用語解説の一部を掲載しています。
出典|株式会社平凡社世界大百科事典 第2版について | 情報
送り状。船荷証券,海上保険証券などとともに重要な船積み書類の一つで,売買契約の条件を履行したことを売主が買主に証明した書類。取引貨物の明細書ならびに計算書で,手形金額,保険価額算定の基礎となり,輸入貨...
9/11 日本大百科全書(ニッポニカ)を更新