精選版 日本国語大辞典 「線形写像」の意味・読み・例文・類語
せんけい‐しゃぞう ‥シャザウ【線形写像】
出典 精選版 日本国語大辞典精選版 日本国語大辞典について 情報
出典 精選版 日本国語大辞典精選版 日本国語大辞典について 情報
平面を自分自身に写す写像fが、直線を直線に写し、原点を原点に写すとき、すなわち直交座標系に関して、
f(x,y)=(ax+by,cx+dy)
(a,b,c,dは定数)
の形で表されるとき、fを平面の線形写像という。たとえば、原点の周りの角θの回転移動fは
f(x.y)
=(cosθ・x-sinθ・y,
sinθ・x+cosθ・y)
と表され、またx軸に関する対称移動gは
g(x,y)=(x,-y)
と表されるから、いずれも平面の線形写像である。しかし、平行移動は線形写像ではない。平面の線形写像は4個の定数a、b、c、dによって定まるので、これを2×2行列を用いて
と表すのが普通である。同様に、空間を平面に写す線形写像、あるいは直線を自分自身に写す線形写像などが考えられる。たとえば、変数yが変数xに比例しているという関係はcを定数としてy=cxと書けるから、これは直線を直線に写す線形写像とみなせる。あるいは、空間ベクトルA=(a,b,c)を一つ定めておき、任意の空間ベクトルX=(x,y,z)にXとAの内積ax+by+cz=f(X)を対応させる写像fは、空間を直線に写す線形写像である。
このように線形写像は、一つのベクトル空間Vをもう一つのベクトル空間Wに写す写像とみなすことができて、次のような性質をもっていることが、定義からすぐわかる。
(1)Vのすべての元X、Yに対して、
f(X+Y)=f(X)+f(Y)
(2)Vのすべての元Xとすべてのスカラーaに対して、
f(aX)=af(X)
これは、線形写像がベクトルの和とスカラー倍を変えないものであることを意味している。なお、ベクトル空間Vをベクトル空間Wに写す写像fが(1)、(2)の性質を満たすとき、fをVからWへの線形写像ということも多い。
[高木亮一]
出典 株式会社平凡社世界大百科事典 第2版について 情報
出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報
出典 株式会社平凡社百科事典マイペディアについて 情報
他の人にすすめること。また俗に、人にすすめたいほど気に入っている人や物。「推しの主演ドラマ」[補説]アイドルグループの中で最も応援しているメンバーを意味する語「推しメン」が流行したことから、多く、アイ...
11/10 日本大百科全書(ニッポニカ)を更新
10/26 ブリタニカ国際大百科事典 小項目事典を更新
10/19 デジタル大辞泉プラスを更新
10/19 デジタル大辞泉を更新
10/10 日本大百科全書(ニッポニカ)を更新
9/11 日本大百科全書(ニッポニカ)を更新