ハンケルの公式(読み)はんけるのこうしき

世界大百科事典(旧版)内のハンケルの公式の言及

【ベッセル関数】より

…νを任意の複素数とするとき,2階の線形常微分方程式,をベッセルの微分方程式という。νが整数(0,±1,±2,……)でないときは,は0<|x|<∞で収束し,(1)の解となる(Γ(ν)はΓ関数)。これを第1種ベッセル関数または円柱関数という。ここでJν(x)とJ-ν(x)とは一次独立である。νが0または正の整数nのときも(2)は(1)の解であり,(2)の右辺の級数は|x|<∞で収束する。この場合,(2)のνを-νでおきかえてから形式的にν→nとして,と定義するが,Jn(x)=(-1)nJn(x)なる関係があるから,Jn(x)とJn(x)とは一次独立でない。…

※「ハンケルの公式」について言及している用語解説の一部を掲載しています。

出典|株式会社平凡社「世界大百科事典(旧版)」

《「晋書」杜預伝から》竹が最初の一節を割るとあとは一気に割れるように、勢いが激しくてとどめがたいこと。「破竹の勢いで連戦連勝する」[類語]強い・強力・強大・無敵・最強・力強い・勝負強い・屈強・強豪・強...

破竹の勢いの用語解説を読む