世界大百科事典(旧版)内のワンツェル,P.の言及
【作図不能問題】より
…その後も何世紀にもわたっていたずらに解法が探されたのであるが,やっと19世紀になって,定規とコンパスを有限回用いる作図法では上の三つの作図は不可能であることが証明されたのである。すなわち,定規とコンパスによる作図が可能であるのは,求める図形をきめる線分の長さを表す数が,与えられた図形をきめる線分を表す数から加減乗除と開平で得られるときに限るということが認識され,このことから,例えば60゜の3等分問題に現れる方程式x3-3x-1=0も,立方体倍積問題に現れる方程式x3=2も加減乗除と開平だけでは解きえないことが,1837年ワンツェルP.Wantzel(1814‐48)によって証明され,また,円積問題を解くのに必要な円周率πは超越数であることが82年にリンデマンC.L.F.Lindemann(1852‐1939)によって証明されるに及んで,ギリシアの三大問題は否定的解決をみたのである。なお,正七角形の作図も定規とコンパスだけでは不可能である。…
※「ワンツェル,P.」について言及している用語解説の一部を掲載しています。
出典|株式会社平凡社「世界大百科事典(旧版)」