Bonnet,O.(その他表記)BonnetO

世界大百科事典(旧版)内のBonnet,O.の言及

【幾何学】より

…このようにして,微積分学を用いて曲線や曲面の性質を研究する微分幾何学が始まったが,19世紀の初めに,ガウスが曲面論の基礎を確立し,曲面上の幾何学を展開するに及んで,数学の一分科としての微分幾何学が成立した。この後,19世紀にはボネO.Bonnet(1819‐92),ベルトラミE.Beltrami(1835‐1900),M.S.リー,J.G.ダルブーらによって,ユークリッド空間における曲線や曲面についての多くの興味ある結果が見いだされた。20世紀に入ると,クラインの思想の影響を受けて,射影空間の曲線や曲面の射影変換で不変な性質を微分学を用いて研究する射影微分幾何学がフビニG.Fubiniらによって研究され,その他のいろいろな空間に対しても同様の微分幾何学がブラシュケW.Blaschke(1885‐1962)らによって研究された。…

※「Bonnet,O.」について言及している用語解説の一部を掲載しています。

出典|株式会社平凡社「世界大百科事典(旧版)」

今日のキーワード

仕事納

〘 名詞 〙 年の暮れに、その年の仕事を終えること。また、その日。《 季語・冬 》[初出の実例]「けふは大晦日(つごもり)一年中の仕事納(オサ)め」(出典:浄瑠璃・新版歌祭文(お染久松)(1780)油...

仕事納の用語解説を読む

コトバンク for iPhone

コトバンク for Android