世界大百科事典(旧版)内のLevi-Civita,T.の言及
【幾何学】より
…リーマン以後,リーマン幾何学はクリストッフェルE.B.Christoffel(1829‐1900),リッチC.G.Ricci(1853‐1925)らによって二次微分形式の不変式論として研究されたが,1916年,A.アインシュタインによって一般相対性理論に用いられて一躍注目を集めることとなった。そのころ,レビ・チビタT.Levi‐Civita(1873‐1941)は平行移動性の概念を導入し,20年ころE.カルタンはそれを接続の概念に発展させたことにより,リーマン幾何学に幾何学的色彩が加わった。なお,リーマン空間では長さを不変にする変換は一般に恒等変換しかないから,リーマン幾何学はクラインの意味での幾何学とはいえず,リーマン幾何学の発展はエルランゲン・プログラムの思想に破綻(はたん)を生ぜしめた。…
【三体問題】より
…この結果は,たとえ新積分が存在してもそれは解析的にきわめて複雑な形であることを示唆したので,三体問題研究の流れを変えることになった。すなわち,今世紀になってからの研究は三体問題の解の存在そのものに向けられ,ポアンカレ,パンルベ,レビ・チビタT.Levi‐Civita(1873‐1941),ビスコンチニG.Bisconciniらを経て,スンドマンK.F.Sundman(1873‐1949)は3天体の同時衝突が起こらぬ限り,任意の初期値のもとに解が一意に存在することを証明した(1912)。このような議論では天体が質点であることが本質的である(質点の衝突で万有引力は∞になるから)。…
※「Levi-Civita,T.」について言及している用語解説の一部を掲載しています。
出典|株式会社平凡社「世界大百科事典(旧版)」