コトバンクはYahoo!辞書と技術提携しています。

Der baryzentrische Kalkül DerbaryzentrischeKalkul

世界大百科事典内のDer baryzentrische Kalkülの言及

【アフィン幾何学】より

…クラインは1872年に有名な《エルランゲン・プログラム》を発表し,その中で幾何学を変換群の立場から統一的に論じ,例えば,図形の性質のうち,合同変換で変わらないような性質を調べるのがユークリッド幾何学であり,射影変換によって変わらない性質を調べるのが射影幾何学であると定義したが,この立場に立つとき,アフィン幾何学とはアフィン変換によって不変な性質を調べる幾何学といえる。この幾何学の源泉はメービウスの《重心算法論Der baryzentrische Kalkül》(1827)にあるが,新しい種類の幾何学として確立したのはクラインである。アフィン変換とは直線をつねに直線にうつし,また線分をつねに線分にうつすような変換を指すが,平行線をつねに平行線にうつす変換といってもよく,この意味で平行変換と呼んでもよいものである。…

※「Der baryzentrische Kalkül」について言及している用語解説の一部を掲載しています。

出典|株式会社日立ソリューションズ・クリエイト世界大百科事典 第2版について | 情報

Der baryzentrische Kalkülの関連キーワードアフィン幾何学

今日のキーワード

優曇華

《〈梵〉udumbaraの音写「優曇波羅」の略。霊瑞、希有と訳す》1㋐インドの想像上の植物。三千年に一度その花の咲くときは転輪聖王が出現するという。㋑きわめてまれなことのたとえ。2 クサカゲロウ類が産...

続きを読む

コトバンク for iPhone

コトバンク for Android