コトバンクはYahoo!辞書と技術提携しています。

Der baryzentrische Kalkül DerbaryzentrischeKalkul

世界大百科事典内のDer baryzentrische Kalkülの言及

【アフィン幾何学】より

…クラインは1872年に有名な《エルランゲン・プログラム》を発表し,その中で幾何学を変換群の立場から統一的に論じ,例えば,図形の性質のうち,合同変換で変わらないような性質を調べるのがユークリッド幾何学であり,射影変換によって変わらない性質を調べるのが射影幾何学であると定義したが,この立場に立つとき,アフィン幾何学とはアフィン変換によって不変な性質を調べる幾何学といえる。この幾何学の源泉はメービウスの《重心算法論Der baryzentrische Kalkül》(1827)にあるが,新しい種類の幾何学として確立したのはクラインである。アフィン変換とは直線をつねに直線にうつし,また線分をつねに線分にうつすような変換を指すが,平行線をつねに平行線にうつす変換といってもよく,この意味で平行変換と呼んでもよいものである。…

※「Der baryzentrische Kalkül」について言及している用語解説の一部を掲載しています。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

今日のキーワード

トランスアジア航空

台湾・台北市に本拠を置く航空会社。中国語名は復興航空。1951年、台湾初の民間航空会社として設立。83年に台湾の国産実業グループに経営移管され、組織改編を実施した。92年に国際チャーター便の運航を始め...

続きを読む

コトバンク for iPhone