世界大百科事典(旧版)内のconchoidの言及
【曲線】より
…原点Oと点A(a,0)を結ぶ線分を直径とする円を考え,この円周上の動点Qに対し,直線OQと直線x=aとの交点をRとして,線分OQ上に点PをOPとQRの長さが等しくなるようにとれば,Pはこの曲線を描く。(2)方程式(x-a)2(x2+y2)=b2x2(a,bは正の定数)で表される四次曲線をコンコイドconchoidまたは螺獅(らし)線という(図6)。直線x=a上の動点Qに対し,直線OQ上に長さbの線分QPをQの両側にとれば,Pはこの曲線を描く。…
※「conchoid」について言及している用語解説の一部を掲載しています。
出典|株式会社平凡社「世界大百科事典(旧版)」