ワイアシュトラースの多項式近似定理
わいあしゅとらーすのたこうしききんじていり
polynomial approximation theorem of Weierstrass
有界閉区間[a,b]で定義された連続関数f(x)は、xの多項式によって、いくらでも近く一様に近似される、という定理。
すなわち、正の数εを任意に与えるとき、xの適当な多項式p(x)をとれば、[a,b]のどの点においても|f(x)-p(x)|<εであるようにできる。
この定理は、いろいろな近似問題の基礎となるばかりでなく、この定理自身がもっと一般な形に拡張されて、解析学の発展を促すことになった。
[竹之内脩]
出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例
Sponserd by 