オイラー‐ポアンカレの式(その他表記)Euler-Poincare's formula

法則の辞典 の解説

オイラー‐ポアンカレの式【Euler-Poincare's formula】

一般の面が多角形によって分割されているとき,F を多角形の面の数,E を多角形の辺の数,V頂点の数としたときに成立する次の式をいう.

FEV=χ

ここで χ は面の大局的な性質を表現する数で,球面なら2,平面なら1,トーラスならば0となる.

凸多面体は球と位相的に同形であるから,オイラーの多面体定理*と同じになる.

出典 朝倉書店法則の辞典について 情報

関連語 オイラー

〘 名詞 〙 春の季節がもうすぐそこまで来ていること。《 季語・冬 》 〔俳諧・俳諧四季部類(1780)〕[初出の実例]「盆栽の橙黄なり春隣〈守水老〉」(出典:春夏秋冬‐冬(1903)〈河東碧梧桐・高...

春隣の用語解説を読む