コトバンクはYahoo!辞書と技術提携しています。

コルテヴェク‐ドフリースの方程式 Korteweg-de Vries equation

法則の辞典の解説

コルテヴェク‐ドフリースの方程式【Korteweg-de Vries equation】

一次元的な浅い水路に生じる波の記述のための方程式.略してKdV方程式*ともいう.ソリトンと呼ばれる安定な解をもつ.波の振幅を a ,波長を λ,水深を h として,a/h~(h/λ)2≪1の条件が満たされた場合,x 方向に速さ &scriptg; は重力加速度)で進む系からみたとき,水面の盛り上がり u

で記述できる.ここで α と β は ch によって定まる定数である.この式から得られる解は,物理的には(αu&partial;u/&partial;x)なる非線形項による波の立上りの効果と,分散項 β(&partial;3u/&partial;x3)による波の広がりの効果の重畳した波となる.いくつかの解があるが,中でも最も重要なのは孤立波解で下のようなものである.

ここで A は孤立波の高さに相当する定数である.

出典 朝倉書店法則の辞典について 情報

コルテヴェク‐ドフリースの方程式の関連キーワードKdV方程式重力加速度