日本大百科全書(ニッポニカ) 「点集合論」の意味・わかりやすい解説
点集合論
てんしゅうごうろん
ある与えられた空間の点を要素とする集合を点集合といい、点集合の位相的性質を調べることを点集合論という。n次元ユークリッド空間Enを考える。Enの点xと正の実数εに対し、xとの距離がεより小さいEnの点の集合をxのε近傍という。AをEnの点集合とする。Enの点xのどのようなε近傍もx以外のAの点を含むとき、xをAの集積点という。Aの点とAの集積点の全体をAの閉包という。Aがその閉包に等しいときAを閉集合という。Aのどの点に対してもその適当なε近傍がAに含まれるとき、Aを開集合という。さらに適当な球にAが含まれるときAは有界であるという。次の一連の定理は点集合論においてとくに重要である。Enの有界な無限集合はかならず集積点をもつ(ボルツァノ‐ワイアシュトラースの定理)。Enの有界閉集合の列FkがFk⊃Fk+1,k=1,2,…を満たすならば、そのすべての交わりは空でない(カントルの共通部分定理)。FをEnの有界閉集合、Gλ,λ∈ΛをRnの開集合の族で
であるものとする。このときこのGλから適当な有限個のGλ1,Gλ2,‥‥,Gλmを選べば、すでに
である(ハイネ‐ボレルの定理)。
[小林良和]