コトバンクはYahoo!辞書と技術提携しています。

ガウス=ラプラスの定理 ガウスラプラスのていりGauss‐Laplace theorem

世界大百科事典 第2版の解説

ガウスラプラスのていり【ガウス=ラプラスの定理 Gauss‐Laplace theorem】

これはド・モアブル=ラプラスの定理ともいい,古くから知られているもっとも重要で基本的な確率論の極限定理の一つである。成功する確率がpであるn回のベルヌーイ試行において,成功する回数Snは二項分布に従う。すなわちP(Snk)=nCkpkqnk(ただしq=1-p)。これからかってな定数ab(>a)に対して,n→∞のときN(b)-N(a)に近づく。ここにN(x)は標準ガウス分布関数である。すなわち,このことは適当に尺度を変えると,Snは平均値npの近くで正規分布に近いことを示す。

出典 株式会社平凡社世界大百科事典 第2版について 情報

ガウス=ラプラスの定理の関連キーワードベルヌーイ試行ド・モアブル

今日のキーワード

裁量労働制

実際の労働時間がどれだけなのかに関係なく、労働者と使用者の間の協定で定めた時間だけ働いたと見なし、労働賃金を支払う仕組み。企業は労働時間の管理を労働者に委ねて、企業は原則として時間管理を行わないことが...

続きを読む

コトバンク for iPhone

コトバンク for Android