ダルブーの定理(読み)ダルブーのていり(その他表記)Darboux's theorem

ブリタニカ国際大百科事典 小項目事典 「ダルブーの定理」の意味・わかりやすい解説

ダルブーの定理
ダルブーのていり
Darboux's theorem

積分の考え方を厳密な解析的方法で確立するための定理で,J.ダルブーによって証明された。区間 [ab] で定義された有界な関数f(x) ,また区間 [ab] を ax0x1<…<xn-1xnb のように部分区間に分割して,その各部分区間の長さを δkxkxk-1 ,各区間 [xk-1xk] における f(x) の下限および上限をそれぞれ mkMk とする。このとき,分点の数を限りなく大きくして,δk の最大のもの δ(D)=maxδk を限りなく0に近づければ,区間 [ab] で定義された任意の有界な関数 f(x) に対して,次の2つの総和 (ダルブーの和)
は,それぞれ確定した極限lL に近づく。また lL の間には lL なる関係が成り立つ。これは,極限の記法によって
と表わすことができる。 lL のときが,リーマン積分可能な場合にあたる。

出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報

2022年度から実施されている高校の現行学習指導要領で必修となった科目。実社会や実生活で必要となる国語力の育成を狙いとし、「話す・聞く」「書く」「読む」の3領域で思考力や表現力を育てる。教科書作りの...

現代の国語の用語解説を読む