チェビシェフの定理(読み)ちぇびしぇふのていり

日本大百科全書(ニッポニカ)「チェビシェフの定理」の解説

チェビシェフの定理
ちぇびしぇふのていり

確率変数Xの平均値がm、分散がσ2であればXのとる値が平均値mからkσ以上離れている確率は1/k2以下になる。すなわち次の関係が成り立つ。

  P(|X-m|≧kσ)≦1/k2
 これをチェビシェフ定理という。この関係をチェビシェフの不等式とよぶこともある。この定理は、確率分布が何であろうと一般的に成り立つ有用な定理であって、たとえばベルヌーイ大数(たいすう)の法則はこの定理から容易に導くことができる。

古屋 

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

世界大百科事典内のチェビシェフの定理の言及

【素数】より

…素数pの次の素数はどのくらいの大きさであろうか。これについては,pの次の素数は2pよりも小さい(チェビシェフの定理)という程度のことしかいえない。実際,100!+2,100!+3,……,100!+100(!は階乗)はすべて合成数で,このように素数を含まないいくらでも長い区間を作ることができる。…

※「チェビシェフの定理」について言及している用語解説の一部を掲載しています。

出典|株式会社平凡社世界大百科事典 第2版について | 情報

今日のキーワード

きらきらネーム

俗に、一般的・伝統的でない漢字の読み方や、人名には合わない単語を用いた、一風変わった名前のこと。名字についてはいわない。どきゅんネーム。[補説]名前に使用する漢字は、戸籍法により常用漢字・人名用漢字の...

続きを読む

コトバンク for iPhone

コトバンク for Android