コトバンクはYahoo!辞書と技術提携しています。

確率 かくりつ

8件 の用語解説(確率の意味・用語解説を検索)

ASCII.jpデジタル用語辞典の解説

確率

ある事象が起こる割合をいう。すべての事象が起こる確率がすべて等しい場合には、それらの場合の数を計算してその逆数を求めれば、それが当該事象が起こる確率となる。

出典|ASCII.jpデジタル用語辞典
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

デジタル大辞泉の解説

かく‐りつ【確率】

probability》ある事象の起こる可能性の度合い。公算。蓋然率(がいぜんりつ)。「確率が高い」

出典|小学館 この辞書の凡例を見る
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

百科事典マイペディアの解説

確率【かくりつ】

ある事象の起こり得る可能性を数で表したもの。過去の頻度(ひんど)数から推定する経験的(統計的)確率と数学的確率とがある。確率の数値は1より小さく,負でない。一般に,一つの集合Ωの部分集合E(事象)に数P(E)を対応させたとき,a.0≦P(E)≦1,b.P(Ω)=1,c.部分集合A,Bが共通部分をもたないときはP(A+B)=P(A)+P(B),の三公理が成立すれば,P(E)をEの確率という。
→関連項目加法定理大数の法則排反事象無作為抽出

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. ご提供する『百科事典マイペディア』は2010年5月に編集・制作したものです

栄養・生化学辞典の解説

確率

 ある事象が何種類かの仕方で起こる場合,そのうちの一つもしくは複数の仕方が起こる割合を示す数値,もしくはそれを予測させる数値.

出典|朝倉書店
Copyright (C) 2009 Asakura Publishing Co., Ltd. All rights reserved.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典 第2版の解説

かくりつ【確率 probability】

銅貨を投げて表が出たり裏が出たりするのは同じ程度に期待できるとか,明日は雨がほとんど降ることはなかろうなど,偶然に支配されて起こる事柄について,それが起こる可能性の大小を表す数値が確率である。そしてそのような現象を数学的に取り扱うのが確率論である。実際の具体的な現象では偶然に起こる事実に加えて他のいろいろな要因が関係してきて複雑になるので,理想化したモデルを想定して考えることが多い。それにしても,偶然とかでたらめの中にある法則を見つけて推論を進めていくだけに,確率の取扱いには厳密な議論が必要となる。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

大辞林 第三版の解説

かくりつ【確率】

一つの事象(出来事)の起こり得る確からしさ(可能性)の度合。また、その数値。数学的には 1 を超えることがなく、負にならない。確からしさ。蓋然率。公算。 「 -が高い」 「降水-一〇パーセント」

出典|三省堂
(C) Sanseido Co.,Ltd. 編者:松村明 編 発行者:株式会社 三省堂 ※ 書籍版『大辞林第三版』の図表・付録は収録させておりません。 ※ それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

ブリタニカ国際大百科事典 小項目事典の解説

確率
かくりつ
probability

ある物事が起るか起らないかが確実に知られていないとき,その物事が起る確からしさ,つまりどのくらいの割合で起るかを表わす値を確率という。それが確実に起るときは確率は1であり,起らないことが確実ならば確率は0である。

本文は出典元の記述の一部を掲載しています。

出典|ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)の解説

確率
かくりつ
probability

「今日、東京で雨が降る確率」「A君がB大学に合格する確率」「A大学がリーグ戦で優勝する確率」「今後10年のうちに東京地区で大地震が起こる確率」というように、確率ということばはいろいろな場面で使われている。簡単にいえば、確率は確からしさの程度を0と1との間の数値として表したもので、確からしさの程度が高いとき1に近く、低いとき0に近い。また確率が0.3であることを確率は30%というように、パーセンテージで表すこともある。始めにあげたいくつかの例の場合に、その確率として一つの数値を具体的に正確に定めるのは容易なことではないし、またそれほど意味のあることでもない。これらの例の場合には5%未満とか、ほぼ50%とか90%とかの程度で十分であろう。
 さて、偶然的に起こるある事柄が実際に起こる確率をどのように定めるか? 同一条件のもとで繰り返して実験ができる場合には、相対度数(N回の繰り返しのうち実際に起こった回数がnであったときn/Nを相対度数という)の値の極限(繰り返しの回数を大きくしたときの)として確率を定めることができる。ただし実際には繰り返しの回数は有限であるから、具体的には近似的な値が定まるだけである。実験を繰り返し行わなくても確率が一定値をとることが期待される場合もある。たとえば、コインを投げたとき表の出る確率は1/2、さいころを投げたとき6の目の出る確率は1/6などである。[古屋 茂]

同様に確からしいこと

さいころを投げたとき、どの目が出るのも同じ確からしさをもつと考えられる。ラプラスは「同様に確からしい」という先験的判断に基づいて確率を定義した。すなわち、結果が偶然に支配されるような実験や観察において起こりうる結果が全部でn通りあり、これらのうちのどれが起こるかが「同様に確からしい」ものとする。このとき着目する事柄Aが起こるのがn通りのうちのa通りであるとすると、Aの起こる確率をa/nと定める。たとえば、さいころを投げたとき6の目の出る確率は1/6であり、偶数の目が出る確率は3/6すなわち1/2である。
 何を「同様に確からしい」と考えるかによって確率が別々な値をとることがある。その例をあげよう。
 図Aのような道を通って、AからBまで回り道をしないで行くとする。Cを通る確率を求めてみる。
〔解(1)〕AからBへ回り道をしないで行く方法は、4から2をとる組合せ、すなわち4C2=6通りある。一方、Cを通る方法は2×2=4通りあるから、6通りのうちの4通り、すなわち4/6=2/3が求める確率である。
〔解(2)〕AからBへ向かうとき、A、D、C、Eの4点ではどちらへ進むか二つのうちの一つを同じ確からしさで選ぶことにする。このときDからCへの道を通る確率は(1/2)×(1/2)=1/4であり、同じくEからCへの道を通る確率も1/4であるから、Cを通る確率は1/4+1/4=1/2となる。
 この二つの解答のどちらが正しいか。AからBへの6通りの道のどれを選ぶかが「同様に確からしい」ときは解(1)が正しい。またA、D、C、Eの各点でどちらへ進むかその選び方が「同様に確からしい」ときは解(2)が正しい。この問題をことばどおりに解釈すると、解(2)のほうが解(1)よりも自然な考え方のように思われる。
 場合の数に関連する確率の問題では、何が「同様に確からしい」かを明確にすることが重要であって、このような確率の問題を考えるとき、「同様に確からしい」場合にまで場合を分解して考えることがたいせつである。「三つのさいころを同時に投げると、目の和が9になる場合の数と、目の和が10になる場合の数とは同じはずであるのに、実際は和が10になるほうが起こりやすいのはなぜか」と友人に尋ねられたガリレイは、(1,2,6)、(1,4,4)、(3,3,3)の起こり方はそれぞれ6通り、3通り、1通りであることに注目し、目の和が9になるのは6×6×6=216通りのうちの6+6+3+3+6+1=25通り、目の和が10になるのは6+6+3+6+3+3=27通りであるので、和が10になるほうが起こりやすいと解答を与えたという。このようにガリレイは「同様に確からしい」場合にまで分解して考えたから正しい結果が得られたのである。[古屋 茂]

確率論の歴史

17世紀のなかばごろにおけるパスカルとフェルマーの文通で取り上げられたいくつかの話題が確率論の始まりといわれているが、それ以前にもガリレイが確率の問題を考えている。パスカル、フェルマーが興味をもったのは、本質的には場合の数を求める問題であった。1657年に出版されたホイヘンスの『さいころ遊びの理論について』は、14の命題からなっているが、そのなかには、さいころについて確率論的に考察したものが含まれている。ベルヌーイはその死後刊行された『推論法』Ars Conjectandi(1713)において、ホイヘンスの研究結果を一般化し、順列・組合せ理論を系統づけ、また初めて大数(たいすう)の法則を定式化してその証明を与えている。以後多くの数学者が確率について論ずるようになったが、ラプラスは1812年に『確率の解析的理論』を完成した。これは、当時、目覚ましい発展を続けていた解析学を武器とし、新しい手法を導入して、それまでの確率の知識を集大成したものである。このラプラスの業績は以後の研究の出発点ともなり、確率の考えは多くの分野で効果的に応用されるようになった。とくに統計学においては確率は欠くことのできないものとなった。19世紀までの確率論を古典確率論とよぶこともある。
 20世紀になって確率論は大きく飛躍した。ボレルは、区間(0,1)の実数を二進展開したとき、ほとんどすべての実数に対して(すなわち測度0の集合に属する実数を除いて)n位までに現れる1の相対度数がn→∞のとき1/2に近づくことを示した。またルベーグは、ジョルダンによる測度論およびボレルによる測度論の両方を特別の場合として含むような一般的な測度論をつくりあげた。この測度の理論は確率論にも大きな影響を与え、1933年にコルモゴロフは、ルベーグ式測度に基づく確率論の公理系を提示して数学としての確率論が確立された。これは測度論的確率論ともよばれている。この測度論的方法は、古典的確率論では手がつけられなかった問題(たとえば確率過程の問題など)に対しても有力であって、現在も急速に発展しつつある。測度論的確率論の基本的部分の公理系は集合と測度のことばを使って書かれている。測度理論に詳しくない読者にもその内容の大筋だけは理解できるように、次にまず、確率についての公理的考えを簡単な場合について説明しておく。[古屋 茂]

公理的方法による確率論

ラプラスは「同様に確からしい」という概念を基にして確率を定義した。カードやさいころなど、場合の数に関連する問題に対してはこれで十分であろう。しかし、確率が応用される範囲が拡大されてくると、「同様に確からしい」という判断が不可能になる場合も生じる。そこで相対度数を基にした確率も考えられるようになった。この方向を代表するものはミーゼスの確率論である。確率の意味そのものについてはいろいろな考え方がある。しかしどのような意味づけをしようとも、確率としてもつべき共通の基本的性質があるはずである。確率とは何かというような問題から離れて、確率のもつ基本的な性質を抜き出し、それだけを基にして、すなわち公理系を基にして確率論を構成するのである。ここでは、ある偶然的な事柄で起こりうる場合の数が有限個である場合を考える。
 結果が偶然に支配されるような実験または観測を試行ということにする。たとえば、さいころを投げるのは一つの試行である。ある試行において起こりうる結果の全体をω1、ω2、……、ωnで表すとき、集合
  Ω={ω12,……,ωn
をその試行の標本空間という。たとえば、さいころを投げる試行においては標本空間は6個の元(げん)をもつ。また硬貨を2回投げて表・裏を調べる試行においては、標本空間は
  (表,表),(表,裏),(裏,表),(裏,裏)
の4個の元よりなる。
 標本空間Ωの元を根元事象といい、Ωの部分集合を事象という。事象Aが起こるというのは、試行の結果を表すω(Ωの元)がAの元であることを意味する。二つの事象A、Bに対してA∪B、A∩BをそれぞれA、Bの和事象、積事象という。=Ω-AをAの余事象、Ωを全事象、(=空集合)を空事象という。
 A∩B=のとき、二つの事象A、Bを排反事象という。これはAとBがともに起こることがないことを表している。たとえば、5本のくじのうちに2本の当たりくじがあるとする。このくじをまずAが、次にBが引くという試行について次のような問題を考える。
 この試行の標本空間をつくれ。Aが当たるという事象はこの標本空間のどんな部分集合か。Bが当たるという事象はこの標本空間のどんな部分集合か。
 これを解くために5本のくじを1、2、3、4、5で表し、1と2が当たりくじとする。A、Bが引いたくじをそれぞれa、bで表せば、試行の結果は(a,b)(a≠b)で表される。したがって標本空間は図Bのような20個の元よりなる。次にAが当たるという事象は図で上の2行の8個の元よりなる。またBが当たるという事象は左の2列の8個の元よりなる。
 Ωの部分集合全体を定義域とする関数Pが
(1)任意の事象Aに対してP(A)≧0
(2)P(Ω)=1, P()=0
(3)A∩B=のときP(A∪B)=P(A)+P(B)
を満たすとき、Pを確率といい、P(A)を事象Aの起こる確率という。根元事象が「同様に確からしい」とき、Ωの元の個数をn、Aの元の個数をaとすれば
  P(A)=a/n
となる。
 前のくじの例では、根元事象は「同様に確からしい」と考えられるから、初めにくじを引くAが当たる確率も、次に引くBが当たる確率も同じ値の2/5となる。まったく同じ方法でn本のうちr本の当たりくじがあるとき、初めにくじを引く人も、次に引く人も、当たる確率は同じであることが示される。[古屋 茂]

測度論的確率論


確率空間、事象、確率
空集合でない集合Ωが与えられている。Ωの部分集合を元とするある集合族は集合を元とする集合であるから集合族とよぶ)があって、次の三つの条件

が成り立つとき、集合族をΩにおける完全加法族という。
 集合ΩとΩにおける完全加法族が与えられたとき、で定義された実数値関数Pが次の条件

を満たすとき、Pを(Ω,)上の確率測度または確率分布という。このときΩを標本空間、Ω、、Pをまとめたもの(Ω,,P)を確率空間という。Ωの元を標本点または根元事象とよぶ。なお、Ωの部分集合全体の集合は完全加法族をなすことは明らかであるが、ここで問題とする集合族は一般にΩの部分集合全体からなる集合族ではない。測度論のことばでいえば、可測でない集合はには属さない。この点は前に述べた標本空間が有限集合の場合と異なっている。
 集合族の元を事象といい、P(A)を事象Aの確率という。(空集合)を空事象、Ωを全事象という。事象A、Bに対してA∪B、A∩Bをそれぞれ和事象、積事象とよぶ。事象Aに対して=Ω-AをAの余事象という。二つの事象A、Bに対してA∩B=のときA、Bは排反事象であるという。[古屋 茂]
事象の独立
二つの事象A、Bが独立であるとは
  P(A∩B)=P(A)P(B)
が成り立つ場合をいう。一般にn個の事象A1、A2、……、Anが独立であるとは、任意の
  1≦i<j<……<k≦n
に対して
  P(Ai∩Aj∩……∩Ak)
   =P(Ai)P(Aj)……P(Ak)
が成り立つ場合をいう。[古屋 茂]
確率変数、分布関数
確率空間(Ω,,P)を考える。Ωで定義された実数値関数Xについて、任意の実数aに対して{ω|X(ω)<a}∈が成り立つとき、Xを確率変数という。Ωを実数全体の集合Rとし、1をRにおけるボレル集合の全体とする。
 確率変数Xに対して
  Φ(A)=P(ω|X(ω)∈A) (A∈1)
と置けば、Φは1上の確率分布となるが、このΦをXの確率分布という。実数aの関数
  F(a)=P(ω|X(ω)≦a)
をXの分布関数という。
 n個の確率変数X1、X2、……、Xnに対してXiを第i成分とするベクトルX=(X1,……,Xn)をn次元確率変数という。このとき、n変数の関数
  F(a1,a2,……,an)=P(ω|X1(ω)≦a1,
   X2(ω)≦a2,……,Xn(ω)≦an)
をXのn次元分布関数という。[古屋 茂]
確率変数の独立性
有限個の確率変数X1、X2、……、Xnが与えられたとき、任意の一次元ボレル集合Ai(1≦i≦n)に対して
  P(ω|X1(ω)∈A1,……,Xn(ω)∈An)
   =P(ω|X1(ω)∈A1)……P(ω|Xn(ω)∈An)
が成り立つ場合に、X1、X2、……、Xnは互いに独立であるという。[古屋 茂]
確率変数の平均値、分散、標準偏差
確率変数Xに対して、上の測度Pによるルベーグ積分が考えられXがPに関して積分可能であれば

をXの平均値という。XがPに関して積分可能でなければXの平均値は存在しない。また、(X-E(X))2が積分可能のとき
  V(X)=E((X-E(X))2)
をXの分散といい、

をXの標準偏差という。次の関係が成り立つ。
  E(aX+bY)=aE(X)+bE(Y)
X、Yが独立であれば
  E(XY)=E(X)E(Y),
  V(X+Y)=V(X)+V(Y)[古屋 茂]
共分散と相関係数
二つの確率変数X、Yに対して
  C(X,Y)=E((X-E(X))(Y-E(Y)))
の右辺が存在するとき、C(X,Y)をX、Yの共分散という。とくに、X、Yが独立であればC(X,Y)=0である。また、X、Yの分散が存在するとき
  V(X+Y)=V(X)+V(Y)+2C(X,Y)
が成り立つ。

を、X、Yの相関係数という。次式が成り立つ。
  |ρ(X,Y)|≦1
X、Yが独立であれば相関係数は0であるが、相関係数が0であってもX、Yは独立でないこともある。[古屋 茂]
『伊藤清著『確率論の基礎』(1944・岩波書店) ▽伊藤清著『現代数学14 確率論』(1953・岩波書店) ▽河田敬義著『確率論』(1948・共立出版) ▽W・フェラー著、河田竜夫・国沢清典監訳『確率論とその応用 上下 上下』(1960~70・紀伊國屋書店)』

出典|小学館 日本大百科全書(ニッポニカ) この辞書の凡例を見る
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典内の確率の言及

【パスカル】より

…しかしこの間メレA.G.chevalier de Méréなどの社交界の人士との交友を通じて,人と人との自然で節度ある交わりを理想とする〈オネットムhonnête homme(紳士,教養人)〉のあり方に開眼し,〈幾何学的精神〉とは異なる〈繊細の精神〉で人間を観察することを学ぶ。同時に科学研究も精力的に続行し,〈大気の重さ〉と〈流体の平衡〉に関する論文を仕上げ(刊行1663),さらに賭博の賭金の分配のしかたをめぐってメレから受けた質問に端を発してフェルマーとともに確率の問題を論じ,その成果として《数三角形論》(刊行1665)を著した。しかし,やがて心の空白を自覚するに至り,ついに54年11月23日の夜,〈第2の回心〉と呼ばれる宗教体験を得て信仰に身を捧げることを決意した(その記録として《覚書》がある)。…

※「確率」について言及している用語解説の一部を掲載しています。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

確率の関連キーワード試行鎮静衣明日天気匙を投げるどくどく身を投げる鉤縄ディスコン大阪大空襲コイン占い

今日のキーワード

日本政策投資銀行

1999年に日本開発銀行と北海道東北開発公庫を統合し、発足した政府系総合政策金融機関。一般の金融機関が行なう金融などを補完・奨励し、長期資金の供給などを行ない、日本の経済社会政策に金融上で寄与していく...

続きを読む

コトバンク for iPhone

確率の関連情報