コトバンクはYahoo!辞書と技術提携しています。

不等式 フトウシキ

4件 の用語解説(不等式の意味・用語解説を検索)

デジタル大辞泉の解説

ふとう‐しき【不等式】

二つの数・式が等しくないことを、不等号を使って表した式。AがBよりも大きいときはA>B、AがB以下であるときはA≦Bのように表す。

出典|小学館 この辞書の凡例を見る
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典 第2版の解説

ふとうしき【不等式 inequality】

二つの数学的対象A,Bが等しくないことを表すAB,ABより大きいことを表すAB,ABより小さいかまたはABとが等しいことを表すABなどを不等式という。ABBAとは同じことを表す。ABとの不等式が考えられ,それらが計算の対象となるのは,A,Bなどのとる値が実数のように大小関係の定められた集合の元であって,それらの元の間に加減乗除の算法が定まっているときである。例えば複素数には大小関係が定められないから,複素数についての不等式は扱われない。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

大辞林 第三版の解説

ふとうしき【不等式】

不等号を用いて表された式。

出典|三省堂
(C) Sanseido Co.,Ltd. 編者:松村明 編 発行者:株式会社 三省堂 ※ 書籍版『大辞林第三版』の図表・付録は収録させておりません。 ※ それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)の解説

不等式
ふとうしき

数や式の大小関係を示す記号>,<,≧,≦を不等号といい、不等号を用いて表した式を不等式という。不等式は、実数の大小関係が基本になっている。したがって、不等式を扱うときは、かならず実数の範囲内で考えることにする。
  abab>0
  ab ⇔ 数直線上ではabの右側の点
が、不等号の基本の意味である(⇔は必要十分条件であることを示す)。
 不等式の基本性質は
(1)a>0,b>0ならばab>0
   a<0,b<0ならばab<0
(2)a>0,b>0またはa<0,b<0ならばab>0
   a>0,b<0またはa<0,b>0ならば ab<0
(3)ab,bcならばac
(4)abならばacbc,acbc
(5)ab,c>0ならばacbc,a/cb/c
   ab,c<0ならばacbc,a/cb/c
 不等式の解法は
〔1〕一次不等式の場合、基本性質を利用して、xa,xa,xa,xaの形に帰着させる。たとえば、3x+5>5x+1の解は、
  (3x+5)-5x-5>(5x+1)-5x-5(基本性質(4))
  -2x>-4, x<2(基本性質(5))
こうしてx<2を得る(図A)。
〔2〕二次不等式の場合、
  ax2bxc0 (a>0)
の形に整理してから、ax2bxc=0の解を考える。この解の状況によって、表1のように分類される。
〔3〕高次不等式の場合、因数分解して、因数の符号を考えて処理する。たとえば、
  x3-2x2-5x+6>0の左辺は(x-1)(x+2)(x-3)と因数分解される。表2の符号の分析により、不等式の解は
  -2<x<1, 3<xとなる(図D)。
〔4〕分数不等式の場合、すべての項を一辺に集めて通分し、因数の符号を考えて処理する。たとえば、

これを移項して

この最後の不等式の各因子の符号の分析は例2と同じく、表2のようになる。ゆえに、解は
  -2<x<1, 3<x
となる(図D)。
〔5〕このほか、無理式を含む不等式、指数関数、対数関数、三角関数を含む不等式など、さまざまな不等式がある。
 不等式の解法では、不等式が正しいために不等式の中に含まれる文字がとりうる値の集合を求めた。これに対して、与えられた条件を満たすすべての文字の値の組合せについて、不等式が恒等的に成立することの証明が必要となる場合もある。たとえば、
  a>0,b>0のときa3b3a2bab2
を証明するには、
  a3b3a2bab2
   =(ab)(a2abb2ab)
   =(ab)(ab)2≧0
同様に
  a2b2c2abbcca
を証明するには、
  a2b2c2abbcca=(1/2){(ab)2+(bc)2+(ca)2}≧0
このような、文字がどのような実数値(あるいは正の実数値)をとっても成立するものは、絶対不等式とよばれる(表3)。[竹之内脩]

出典|小学館 日本大百科全書(ニッポニカ) この辞書の凡例を見る
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

不等式の関連キーワード重根等号内積平衡定数連比比例式不等号アントノフの規則平行六面体の法則給付・反対給付均等の原則

今日のキーワード

トランスアジア航空

台湾・台北市に本拠を置く航空会社。中国語名は復興航空。1951年、台湾初の民間航空会社として設立。83年に台湾の国産実業グループに経営移管され、組織改編を実施した。92年に国際チャーター便の運航を始め...

続きを読む

コトバンク for iPhone

不等式の関連情報