パップス=ギュルダンの定理(読み)パップスギュルダンのていり(その他表記)law of Pappus-Guldin

改訂新版 世界大百科事典 の解説

パップス=ギュルダンの定理 (パップスギュルダンのていり)
law of Pappus-Guldin

空間内の一つの平面上に互いに交わらない直線l図形Dがあるとき,Dlのまわりに空間内で回転させて得られる回転体体積は,D面積と,D重心密度は一様として)がlのまわりを回転して描く円周の長さとの積に等しい。この事実をパップス=ギュルダン定理という。回転面の面積についても同様なことがいえる。すなわち,空間内の一つの平面上に互いに交わらない直線lと曲線Cがあるとき,Clのまわりに空間内で回転させて得られる回転面の面積は,曲線Cの長さと,Cの重心(密度は一様として)がlのまわりを回転して描く円周の長さの積に等しい。これもパップス=ギュルダンの定理という。例えば図で,Dを半径rの円板とし,Dの中心とlとの距離をa(>r)とすると,Dlのまわりに回転して得られる円環体(ドーナツ状の立体)の体積V,表面積Sはそれぞれ,

 V=πr2×2πa=2π2ar2

 S=2πr×2πa=4π2ar

で与えられる。

 なお,これらの定理は4世紀ころアレクサンドリアのパッポスPappos(ラテン名パップスPappus)が発見,のちギュルダンP.Guldin(1577-1643)によって再発見された。
執筆者:


出典 株式会社平凡社「改訂新版 世界大百科事典」改訂新版 世界大百科事典について 情報

関連語 清三 伊藤

百科事典マイペディア の解説

パップス=ギュルダンの定理【パップスギュルダンのていり】

〈平面上の図形をその平面上の一直線を軸として一回転したときできる図形(回転体)の体積は,もと平面図形の面積と,それの重心が描く円周の長さとの積に等しい〉。前3世紀ごろアレクサンドリアのパップスが発見,のちギュルダンGuldin〔1577-1643〕が再発見。

出典 株式会社平凡社百科事典マイペディアについて 情報

今日のキーワード

ドクターイエロー

《〈和〉doctor+yellow》新幹線の区間を走行しながら線路状態などを点検する車両。監視カメラやレーザー式センサーを備え、時速250キロ以上で走行することができる。名称は、車体が黄色(イエロー)...

ドクターイエローの用語解説を読む

コトバンク for iPhone

コトバンク for Android