日本大百科全書(ニッポニカ) 「リーマン積分」の意味・わかりやすい解説
リーマン積分
りーまんせきぶん
Riemann integral
f(x)は、区間[a,b]で与えられた有界な関数であるとする。さらに、区間[a,b]を分点x1,x2,……,xn-1(x0=a,xn=bとする)によって細分し、その分割をΔとする( の(1))。そして、各小区間内に一点ξk(xk-1≦ξk≦xk)を任意にとり、次の和S(Δ)を考える。
S(Δ)=f(ξ1)(x1-x0)+f(ξ2)
(x2-x1)+……+f(ξn)(xn-xn-1)
( の(2)の長方形の面積の和)
そして、どのように分割Δをとり、またどのように点ξkを各小区間から選んでも、分割Δを構成する小区間の幅を一様に小さくしていけば(すなわちxk-xk-1(k=1,2,……,n)の最大のものを0に近づける、このときもちろんn→∞)、S(Δ)がある一定の値Iに近づくとき、f(x)はリーマン積分可能であるといい、
で表す。
リーマンはこの定義を与えたのち、単調関数はリーマン積分可能であることを示した(1854)。連続関数がリーマン積分可能であることを示したのは、ハイネである(1874)。
[竹之内脩]