日本大百科全書(ニッポニカ) 「整域」の意味・わかりやすい解説
整域
せいいき
数学用語。単位元1をもつ可換環Aが(1)Aの元a、bに対し
ab=0⇒a=0 または b=0
(2)1と0は異なるを満たすとき、Aを整域という。整数環Zと、体k係数の多項式環k[X]は整域である。また、体と、体の1を含む部分環は整域である。整数環Zから有理数体Qをつくるように、任意の整域Aから、Aを部分環として含む最小の体Kを次のようにつくることができる。
Kを記号a/b(a,b∈A,b≠0)で表される元の集合とする。ただし、
(3)a/b=a'/b'⇔ab'=a'bとする。Kの元の和と積を、有理数のときと同じように
(4)(a1/b1)+(a2/b2)
=(a1b2+a2b1)/(b1b2)
(5)(a1/b1)(a2/b2)
=(a1a2)/(b1b2)
と定義すると、この和・積は(3)の同値関係と矛盾せず、Kを体にする。このとき、Aの元aをa/1と同一視すると、体Kは、Aを部分環として含むような最小の体であることがわかる。このKを整域Aの商体という。整域Zの商体はQであり、多項式環k[X]の商体は有理関数体
k(X)={f(X)/g(X)|f,g∈k[X]g≡0}
である。
[菅野恒雄]