フィボナッチ数列(読み)フィボナッチスウレツ

デジタル大辞泉 「フィボナッチ数列」の意味・読み・例文・類語

フィボナッチ‐すうれつ【フィボナッチ数列】

Fibonacci numbers数学で、最初二項が1で、第三項以降の項がすべて直前の二項の和になっている数列。すなわち、1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…という数列のこと。イタリア数学者レオナルド=フィボナッチの名にちなむ。

出典 小学館デジタル大辞泉について 情報 | 凡例

日本大百科全書(ニッポニカ) 「フィボナッチ数列」の意味・わかりやすい解説

フィボナッチ数列
ふぃぼなっちすうれつ

初項と第2項を1とし、第3項以後次々に前2項の和をとって得られる数列。つまり、
  a1=1, a2=1, an+1anan-1
    (n=2, 3, 4,……)
で表され、
  1, 1, 2, 3, 5, 8, 13, 21, 34,……
という数列となる。これはフィボナッチが『算術の書』(1202)のなかで、次のような問題として提起したものである。「一つがいのウサギは、生まれて2か月後から、毎月一つがいの子供を産むとする。初めの生まれたての一つがいがいるとき、1か月後、2か月後、……のウサギのつがいの総数を求めよ」。

 フィボナッチ数列の相隣る項の比をとってできる数列a2/a1, a3/a2,……つまり、
  1, 2, 5/3, 8/5,……
は、無限連分数

を途中で打ち切って得られる分数の列である。この分数列は (1+)/2 に収束する。この極限値は、黄金比黄金分割の比)として、古来、重要視された数である。anは、

と表すことができる。

[竹之内脩]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

占い用語集 「フィボナッチ数列」の解説

フィボナッチ数列

「フィボナッチ」は12~13世紀に実在したイタリアの数学者のこと。数列は、1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657... となり、どの項も、その前の2つの項の和となる。「フィボナッチ数列」は自然界に数多く存在し、例として「花の花弁枚数が3枚、5枚、8枚、13枚のものが多い」・「ひまわりの種は螺旋状に21個、34個、55個、89個・・・と並ぶ。」などが挙げられる。

出典 占い学校 アカデメイア・カレッジ占い用語集について 情報

世界大百科事典(旧版)内のフィボナッチ数列の言及

【黄金分割】より

…正五角形の同じ頂点を通らない2本の対角線は互いに他を黄金分割する(図3)。1,1よりはじめて順次に前の2項の和をつくることによって得られる数列 1,1,2,3,5,8,13,……をフィボナッチ数列というが,この数列より相隣る2項の比をつくることによって得られる分数の数列 1/1,1/2,2/3,3/5,5/8,8/13,……は黄金比に近づく。黄金比は連分数により次のように表される。…

【建築モデュール】より

…単位は10cmまたは4インチであり,10cmの場合は1を10とし,4インチの場合は1を4として数列を読みかえる。 フィボナッチ数列は直前2項の和を次の項とする数列であり,並び合う2項の比が急速に黄金比に収束するため,建築においては特殊な意味をもたされている数列である。この数列ではその定義により,ある制限内でのモデュールの合成や分解は可能であるが,寸法の割込みなどには不つごうであるため,多くは他の倍数系列と組み合わせて使われる。…

※「フィボナッチ数列」について言及している用語解説の一部を掲載しています。

出典|株式会社平凡社「世界大百科事典(旧版)」

今日のキーワード

仕事納

〘 名詞 〙 年の暮れに、その年の仕事を終えること。また、その日。《 季語・冬 》[初出の実例]「けふは大晦日(つごもり)一年中の仕事納(オサ)め」(出典:浄瑠璃・新版歌祭文(お染久松)(1780)油...

仕事納の用語解説を読む

コトバンク for iPhone

コトバンク for Android