1変数の多項式f(x)を一次式x-aで割った商をg(x),余りをαとするとき,恒等式,
f(x)=(x-a)g(x)+α
が成り立ち,この式の両辺にx=aを代入すると,α=f(a)を得る。多項式を一次式で割った余りを与えるこの事実を剰余定理という。例えば,f(x)=x4-3x3+5x2-2x+1をx-3で割った余りは,f(3)=34-3×33+5×32-2×3+1=40である。とくにf(a)=0のとき,f(x)はx-aで割りきれる。この場合を因数定理と呼んでいる。一般にn変数x1,……,xnの多項式,f(x1,……,xn)についてf(x1,……,xn)をx1の多項式と考えると,x1の一次式x1-g(x2,……,xn)でf(x1,……,xn)を割ったときの余りはf(g(x2,……,xn),x2,……,xn)で与えられる。
執筆者:杉江 徹
出典 株式会社平凡社「改訂新版 世界大百科事典」改訂新版 世界大百科事典について 情報
出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報
出典 株式会社平凡社百科事典マイペディアについて 情報
[1973~ ]プロ野球選手。愛知の生まれ。本名、鈴木一朗。平成3年(1991)オリックスに入団。平成6年(1994)、当時のプロ野球新記録となる1シーズン210安打を放ち首位打者となる。平成13年(...
12/17 日本大百科全書(ニッポニカ)を更新
11/21 日本大百科全書(ニッポニカ)を更新
10/29 小学館の図鑑NEO[新版]動物を追加
10/22 デジタル大辞泉を更新
10/22 デジタル大辞泉プラスを更新