コトバンクはYahoo!辞書と技術提携しています。

代数学 だいすうがく algebra

翻訳|algebra

6件 の用語解説(代数学の意味・用語解説を検索)

ブリタニカ国際大百科事典 小項目事典の解説

代数学
だいすうがく
algebra

(1) 一般に,初等代数学を意味している。すなわち算用数字の代りに文字記号で表わされた変数を用いて計算することや,代数方程式を解く操作。 (2) 現在では特に専門家にとって,現代代数学 (高等代数学とも抽象代数学ともいう) と呼ばれている数学の分野を意味する。

本文は出典元の記述の一部を掲載しています。

出典|ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

デジタル大辞泉の解説

だいすう‐がく【代数学】

数の代わりに文字を用い、計算の法則・方程式の解法などを主に研究する数学の一分野。現在では、代数系の研究をいう。

出典|小学館 この辞書の凡例を見る
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

百科事典マイペディアの解説

代数学【だいすうがく】

初等代数学は,未知数を文字で表して方程式を作り,それを解く数学の一部門。インドに生まれアラビアを経てルネサンス期にヨーロッパに伝わり,16世紀F.ビエトにより記号法がほぼ確立された。
→関連項目算数抽象代数学フワーリズミー

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. ご提供する『百科事典マイペディア』は2010年5月に編集・制作したものです

世界大百科事典 第2版の解説

だいすうがく【代数学 algebra】

西欧語algebraの語源は,アラビアの数学者フワーリズミーの著書《ジャブルとムカーバラの算法の摘要の書al‐Kitāb al‐mukhtasarfi hisāb al‐jabr wa‐al‐muqābalah》の一部アルジャブルal‐jabr(変形,移項などを意味する)である。広い意味での代数学は,(1)代数方程式の解法および連立方程式の解法に関連する事項を中心とする古典代数学,(2)抽象的な体論,群論,環論などを中心とする抽象代数学,(3)整数論や代数幾何学などのうち,研究方法が(2)の方法と深い関連をもつ分野を含むが,ここでは,(1),(2)について述べる。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

大辞林 第三版の解説

だいすうがく【代数学】

初等的には方程式の解法のように、個々の数字の代わりに文字を用いて一般的な数を代表させ、数の関係・数の性質・数の計算法則などを研究する数学。現在では、要素間の結合(例えば加法・乗法)が定義された集合(代数系)を抽象的に研究する学問(抽象代数学)となっている。

出典|三省堂
(C) Sanseido Co.,Ltd. 編者:松村明 編 発行者:株式会社 三省堂 ※ 書籍版『大辞林第三版』の図表・付録は収録させておりません。 ※ それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)の解説

代数学
だいすうがく
algebra

幾何学、解析学と並ぶ数学の大きな分野の一つで、数の四則のような演算が定義された集合をおもな研究対象にしている。より正確にいえば次のようになる。集合AとA自身との積集合A×AからAへの写像
  f:A×A∋(a,b)→f(a,b)∈A
をAの二項演算という。数の足し算(a,b)→a+bおよび掛け算(a,b)→abは、数の集合の二項演算である。
 有限個の二項演算が定義されている集合を代数系という。現代の代数学は、ひとことでいえば、代数系を研究する数学である。とくに重要な代数系として、群、環、体、リー環があり、それぞれに独自の理論ができているが、相互の代数系を関係づけた研究もなされ、また、他の数学の分野への応用も考えられてきている。[菅野恒雄]

群論

整数全体の集合Zでは、数の足し算と引き算の二つの二項演算ができる。一方0以外の有理数全体の集合Qxでは、数の掛け算と割り算ができる。これら二つの代数系Z、Qxは集合としても違うし、その二項演算もまったく異なるが共通の性質をもっている。それが群という考え方である。つまり、集合Gに
  f:G×G∋(a,b)→f(a,b)∈G
なる二項演算が定義され
(1)f(f(a,b),c)=f(a,f(b,c))
          (a,b,c∈G)
(2)Gに特殊な元eがあって
  f(a,e)=f(e,a)=a (a∈G)
(3)写像G∋a→g(a)∈Gが定義され
  f(a,g(a))=f(g(a),a)=e
           (a∈G)
を満たすとき、Gを群という。
 さて、群をこのように定義すると、Z、Qxのような数の群以外の群があることがわかる。たとえば、Mを空でない集合とし、P(M)をMからMの上への一対一写像全体とする。P(M)の元σ、μに対し、
(4)(μσ)(m)=μ(σ(m))
           (m∈M)
とすると、μσはP(M)の元で、二項演算(μ,σ)→μσでP(M)は群になる。この群P(M)をMの変換群といい、P(M)の元をMの置換という。とくにM={1,2,……,n}のとき、P(M)をSnと書き、n次の対称群という。Snはn!個の元からなっている。一般に元の個数が有限である群を有限群というが、対称群Snは有限群論でとくに重要な役をする。
 また、Mが線形空間のとき、P(M)の元σで線形写像になっているもの全体の集合GL(M)は、それ自身、群になる。この群GL(M)は、線形空間の次元をnとすると、n次正方行列で行列式が0でないもの全体のつくる乗法群と本質的に同じで、線形空間Mの自己同形群という。
 群を研究する数学が群論であるが、とくに
  f(a,b)=f(b,a) (a,b∈G)
が成り立つ群を可換群またはアーベル群といい、数学の他の分野に広く応用されている。置換群は、Mの元が3個以上なら可換群ではないが、幾何学などと関連が深い。[菅野恒雄]

環論

整数全体Zは、足し算、引き算のほかに掛け算もできる。このように集合Aが
(5)A×A∋(a,b)→a+b∈Aで可換群になる。
(6)A×A∋(a,b)→ab∈Aについて、
  (ab)c=a(bc) (a,b,c∈A)
さらに、特殊な元eで
  ae=ea=a (a∈A)
なるものがある。

を満たすとき、Aを環という。環は、足し算、引き算、掛け算の三つの二項演算をもつ代数系である。環Aでは(5)からa+b=b+a (a,b∈A)が成り立つ。積について、とくに
(8)ab=ba (a,b∈A)
が成り立つとき、Aを可換環という。Zや多項式全体C[X]は可換環である。n次正方行列全体Mn(C)は、行列の加法、乗法で環になるが、n≧2なら可換環でない。環Mn(C)は、C上の線形空間でもあり、スカラー積と、環としての乗法の間に
(9)α(ab)=(αa)b=a(αb)
    (α∈C, a,b∈Mn(C))
が成り立つ。このように、環でもあり線形空間でもあるAが(9)を満たすとき、Aを多元環という。環を研究する数学が環論である。とくに可換環と多元環は古くから研究されている。[菅野恒雄]

体論

有理数全体Qは、足し算、引き算、掛け算ができて、可換環であるが、さらに0以外の元による割り算ができる。このように集合Kが
(10)Kは加法と乗法で可換環である。
(11)Kの0以外の元全体Kxは乗法で群である。を満たすとき、Kを体という。
 Qと同様に、実数全体R、複素数全体Cは体であるが、Zは体でない環である。体は、環の特別なもので、俗に、四則演算が可能な代数系といわれるが、四則のうちの割り算、(a,b)→ab-1はb≠0のとき可能であるから、厳密にいうとKの二項演算ではない。条件(11)でKxが可換群になるとき、Kを可換体という。可換体でない体を非可換体といい、可換体を単に体ということもある。QはCに含まれる最小の体であるが、QとCの間に無数の体がある。このような体を数体という。
 Q係数のn≧一次多項式f(X)は、代数学の基本定理により、最高次の係数を1とすると、
(12) f(X)=(X-ω1)(X-ω2)
      ……(X-ωn)
のように、f(X)の根といわれる複素数ω1、……、ωnで書ける。このようなf(X)の根になっている複素数ωを代数的数という。代数的数全体はQとCの間にある体で、を研究する数学が整数論である。
 さて、(12)のf(X)の根ω1、……、ωnとQを含む最小の体Q(ω1,……,ωn)は、n個の数ω1、……、ωnとQの元から有限回の四則演算で得られる数全体からなるが、体Q(ω1,……,ωn)を集合と考えての置換σでQ(ω1,……,ωn)の元a、bに対し
  σ(a+b)=σ(a)+σ(b),
  σ(ab)=σ(a)σ(b)
を満たすもの全体は、二項演算(4)で有限群Gをつくる。さらに、Q(ω1,……,ωn)に含まれる体と、Gに含まれる群との間に、自然で美しい対応がつくことがわかっている。これが、現代代数学の一つの頂点であるガロアの定理である。
 代数的数でない数を超越数という。数体Kが超越数を含むとき、KをQの超越拡大体という。この種の体は、代数多様体の関数体として現れ、代数幾何学で重要である。[菅野恒雄]

リー環

環の公理(5)が成り立ち、さらに(6)のかわりに一種の乗法(a,b)→[a,b]について

が成り立つ代数系Aをリー環という。
 n次正方行列全体Mn(C)は、行列の加法と乗法で環であったが、行列の加法と、新しい乗法[a,b]=ab-baでリー環にもなっている。群と多様体の結合概念にリー群といわれるものがあるが、この群の単位元での接空間は自然な方法でリー環になる。このように、リー環は多様体と結び付き、重要である。[菅野恒雄]

代数学の歴史

数を記号で表すことが代数学の始まりなら、それは紀元前インド、アラビア、エジプトなどで行われていた。16世紀ヨーロッパで記号法が完成し、すでに得られていた一次方程式、二次方程式に次いで、カルダーノの三次方程式、フェラリの四次方程式の解法の発見がある。その後、五次以上の方程式の代数的解法の研究がなされたが、19世紀に入り、アーベル、ガロアらによって、次数が五以上の代数方程式は一般には代数的に解けないことが証明された。この根拠に、いわゆるガロアの理論がある。この理論の整理とフェルマーの問題などの研究が契機となり、群、環、体の基礎理論が確立された。
 また、角の三等分など、古い幾何学の問題が代数の理論で証明されるなど、幾何学、解析学に応用される一方、公理を用いたさまざまな代数系が考え出され、今日の抽象代数学ができあがった。[菅野恒雄]
『彌永昌吉・布川正巳編『代数学』(1968・岩波書店) ▽石田信著『代数学入門』(1978・実教出版)』

出典|小学館 日本大百科全書(ニッポニカ) この辞書の凡例を見る
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典内の代数学の言及

【多元環】より

…実数を係数とする二次の正方行列全体をAで,また実数全体をKで表すと,次の(1)(2)が成り立っている。(1)AK上の加群である。すなわち,Aの二つの元の和が定義されていて,それについてAはアーベル群(可換群)であり,Kの元λとAの元aの積λa(スカラー倍)が定まっていて次の(イ)~(ハ)の性質をもつ。 (イ)λ(ab)=λa+λb (ロ)λ12a)=(λ1λ2)a (ハ)1・aa(2)Aの二つの元a,bの積abが定義されていて,(イ)~(ニ)の性質をもつ。…

【フワーリズミー】より

…アラビア代数学の出発点をつくった数学者で,また天文学者,地理学者。アラル海の南ホラズムの出身で,アッバース朝のカリフ,マームーン治下のバグダードで活躍した。…

※「代数学」について言及している用語解説の一部を掲載しています。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

代数学の関連キーワードアラビア湾アラビア馬アラビアゴムの木アラビア人アラビア数字アラビア糊アラビアンライトアラビストアラビア風狂想曲アラビアンロック

今日のキーワード

パラチオン、パラチオンメチル

パラチオンは無色で油状の液体、パラチオンメチルはコハク色の液体。ともに毒性が強く、有機リン系殺虫剤として使用された。50年代以降、稲の害虫被害を防ぐことが確認され、広く導入された。しかし、農民の中毒死...

続きを読む

コトバンク for iPhone

代数学の関連情報