コトバンクはYahoo!辞書と技術提携しています。

チェバの定理 チェバのていり Ceva's theorem

3件 の用語解説(チェバの定理の意味・用語解説を検索)

ブリタニカ国際大百科事典 小項目事典の解説

チェバの定理
チェバのていり
Ceva's theorem

三角形に関する次の定理をいう。三角形 ABCと,その平面上の1点Pが与えられたとき,三角形の頂点A,B,Cと点Pとを結ぶ3直線が,辺 BC,CA,ABまたはその延長と交わる点をそれぞれX,Y,Zとすれば が成り立つ。

本文は出典元の記述の一部を掲載しています。

出典|ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

世界大百科事典 第2版の解説

チェバのていり【チェバの定理 Ceva’s theorem】

イタリアのチェバG.Ceva(1647‐1734)が発見した次の定理をいう。三角形ABCの辺BC,CA,AB,またはそれらの延長上にそれぞれ点D,E,Fがあり,これらは三角形ABCの頂点でないとする。このとき直線AD,BE,CFが1点で交わるか,または互いに平行になるための必要かつ十分条件は,が成り立つことである。ここに上式の左辺の各分数はD,E,Fが線分BC,CA,ABの内分点であるか外分点であるかに応じて,+,または-の符号をつけて考えるものとする。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

日本大百科全書(ニッポニカ)の解説

チェバの定理
ちぇばのていり

三角形ABCにおいて、頂点と異なる点をPとし、AP、BP、CPが対辺と交わるとき、その交点をそれぞれD、E、Fとすると、各辺を内分あるいは外分する三つの比の積が1になる。すなわち、

である。これをチェバの定理という。イタリアの数学者チェバGiovanni Ceva(1647?―1734)が1678年に発表した定理。この定理の逆も成り立つ。すなわち、三角形ABCの三辺BC、CA、AB上に3点D、E、Fがあり、前述の三つの比の積が1ならば、三直線AD、BE、CFは1点で交わる。ただし、3点のうち二つが辺の延長上にあるときは、頂点と結んでできる三直線が平行となることもある。
 三直線が1点で交わることを示す定理を共点定理というが、チェバの定理の逆はその基本となるものである。三角形の重心、垂心、内心など、チェバの定理の逆を用いて導くことができる。[柴田敏男]

出典|小学館 日本大百科全書(ニッポニカ) この辞書の凡例を見る
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

チェバの定理の関連キーワードイタリアンカフェバーイタリア合奏団イタリア協奏曲イタリア料理の日イタリアン・トマトコンチェルト・イタリアーノドン・イタリアーノCeva,G.チェバ,G.

今日のキーワード

大寒

二十四節気の一つ。元来,太陰太陽暦の 12月中 (12月後半) のことで,太陽の黄経が 300°に達した日 (太陽暦の1月 20日か 21日) から立春 (2月4日か5日) の前日までの約 15日間で...

続きを読む

コトバンク for iPhone

チェバの定理の関連情報