カバリエリの原理(読み)カバリエリのげんり(英語表記)principle of Cavalieri

ブリタニカ国際大百科事典 小項目事典「カバリエリの原理」の解説

カバリエリの原理
カバリエリのげんり
principle of Cavalieri

曲線で囲まれた2個の平面図形AB とする。これらをある定直線平行直線で切れば,AB で切取られた線分の長さのが,常に ab (一定) になるとする。このとき AB面積の比も ab である。この定理イタリアの数学者 B.カバリエリが実験的に発見した (1629) もので,立体についても,同様のことがいえる。すなわち,「2つの立体を AB とする。一定の平面に平行な平面でこれらを切ったとき,その切り口の面積の比が常に ab であれば,それらの体積の比も ab である」。

出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報

日本大百科全書(ニッポニカ)「カバリエリの原理」の解説

カバリエリの原理
かばりえりのげんり

二つの立体において、一平面に平行な平面で切った切り口の面積がつねに等しければ二つの立体の体積は等しい、という原理。イタリアのカバリエリがこの原理を発見し、微分積分法以前に、たとえば錐体(すいたい)の体積はつねに柱体の体積の3分の1に等しいことなどを発見した。

[竹之内脩]


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

デジタル大辞泉「カバリエリの原理」の解説

カバリエリ‐の‐げんり【カバリエリの原理】

二つの立体を一定の平面に平行な平面で切ったとき、切り口の面積の比が等しければ、この二つの立体の体積の比は等しいという原理。

出典 小学館デジタル大辞泉について 情報 | 凡例

世界大百科事典内のカバリエリの原理の言及

【カバリエリの定理】より

…平面上に二つの図形A,Bがあって,一定の方向の直線で両図形を切るとき,Aの切口の長さがつねにBの切口の長さのk倍であるならば,Aの面積はBの面積のk倍である。ガリレイの弟子B.カバリエリが,この事実を用いて種々の図形の面積を求める問題を論じたのは,微積分の発見される以前のことであって,この事実をカバリエリの定理(またはカバリエリの原理)という。このことを用いると,例えば,円x2y2a2の面積がπa2であることから,楕円x2/a2y2/b2=1の面積がπabであることが導かれる。…

※「カバリエリの原理」について言及している用語解説の一部を掲載しています。

出典|株式会社平凡社世界大百科事典 第2版について | 情報

今日のキーワード

戻り梅雨

梅雨が明けたあとに、再び梅雨のような状態に戻ること。返り梅雨。《季 夏》[類語]梅雨・梅雨ばいう・五月雨・空梅雨・菜種梅雨・走り梅雨・返り梅雨...

続きを読む

コトバンク for iPhone

コトバンク for Android