コトバンクはYahoo!辞書と技術提携しています。

ジョルダンの曲線定理 ジョルダンのきょくせんていりJordan's theorem of curve

2件 の用語解説(ジョルダンの曲線定理の意味・用語解説を検索)

ブリタニカ国際大百科事典 小項目事典の解説

ジョルダンの曲線定理
ジョルダンのきょくせんていり
Jordan's theorem of curve

ジョルダン閉曲線は,平面を2つの部分に分ける。すなわち,平面内のジョルダン閉曲線 (単一閉曲線) は,平面を内および外の2つの領域に分けるという定理。直観的には自明だが,C.ジョルダンが初めて定理として述べて証明を試みたので,この名がある。

本文は出典元の記述の一部を掲載しています。

出典|ブリタニカ国際大百科事典 小項目事典
ブリタニカ国際大百科事典 小項目事典について | 情報

日本大百科全書(ニッポニカ)の解説

ジョルダンの曲線定理
じょるだんのきょくせんていり

平面上の曲線の位相的性質に関する定理。円周と同位相な位相空間ジョルダン曲線Jという。すなわちジョルダン曲線とは、ある点から出発して、自分自身とはけっして交わらずに進み、最後に出発点へと戻る曲線のことである。よって、平面上の円周Sももちろんジョルダン曲線であるし、図Aのような複雑な曲線Jもジョルダン曲線である。
 円周Sの場合、平面は円周によって、原点Oを含んでいる内部と、外へ無限に広がる外部との二つの部分に分けられる(図B)。この性質が一般のジョルダン曲線でも成り立つことを主張するのが、ジョルダンの曲線定理である。すなわち「平面R2内のジョルダン曲線Jは、R2を内、外二つの領域G1G2とに分ける」。つまり、R2JG1G2であり、さらにJは領域G1G2の共通の境界となる(すなわちJ上の任意の点はG1からでもG2からでも到達できる)。
 したがって、外部の1点から内部の1点へと曲線で結べば、かならずジョルダン曲線Jと少なくとも1回は交わる。一般には2点を結ぶ曲線がジョルダン曲線と奇数回交われば、それら2点は異なる領域に属し、偶数回交われば、それらは同じ領域に属することがわかる。
 このジョルダンの曲線定理は、フランスの数学者ジョルダンがその『解析学講義』(1893)で述べたのが始まりであるが、その事実は直観的には古代の人々にも明らかであったので、人々は囲いに動物を追い込んでこれをとらえることができたのである。しかし、この証明は非常にむずかしく、完全な証明は20世紀に入ってから与えられた。また、ブローエルLuitzen Egbertus Jan Brouwer(1881―1966)やアレクサンダーJames Waddle Alexander(1888―1971)はこれを高次元へ拡張した。すなわち、「Jn-1n次元ユークリッド空間Rn中のn-1次元球面であると、RnJn-1は二つの成分G1G2よりなり、Jn-1G1G2との共通の境界となる」。[野口 廣]

出典|小学館 日本大百科全書(ニッポニカ)
日本大百科全書(ニッポニカ)について | 情報 凡例

世界大百科事典内のジョルダンの曲線定理の言及

【位相幾何学】より

…この性質は,円と同相である平面上のどんな図形についても成立している。〈平面上における円と同相な図形は,平面を二つの領域に分ける(ジョルダンの曲線定理Jordan’s curve theorem)〉は平面位相幾何学における基本定理である。空間における円と同相な図形は空間を二分しない。…

【幾何学】より

…一般に,幾何学とは図形に関する数学であると説明されているが,幾何学の対象,内容,方法は時代とともに著しく変遷し,その範囲も非常に拡大され,現在ではこれらをすべて含むように幾何学を定義することはできない。しかしながら,幾何学と名のつく数学では,図形の直観,またはその類似に依存して研究される度合が強い。なお,geometryはギリシア語の〈土地を測る〉を意味するgeōmetriaに由来し,幾何は中国語で量的な問いを意味する疑問詞で,中国からの伝来語である。…

【ジョルダン曲線】より

…したがってジョルダン曲線とは自分自身と交わらない閉曲線で,円周と同相となる図形ということができる。ジョルダン曲線については,ジョルダンの曲線定理と呼ばれる次の定理が有名である。〈平面上にジョルダン曲線Cがあれば,平面からC上の全部の点を除いた残りは,ちょうど二つの連結した部分から成り立っていて,これらの部分の一つから他の部分へいくには必ずCをよぎらなければならない〉。…

※「ジョルダンの曲線定理」について言及している用語解説の一部を掲載しています。

出典|株式会社日立ソリューションズ・クリエイト
世界大百科事典 第2版について | 情報

今日のキーワード

稀勢の里寛

1986- 平成時代の力士。昭和61年7月3日生まれ。中学卒で鳴戸部屋に入門し,平成14年3月初土俵。16年5月新十両,同年11月には18歳4ヵ月で新入幕をはたす。18年7月新三役小結,21年3月新関...

続きを読む

コトバンク for iPhone