コトバンクはYahoo!辞書と技術提携しています。

動物 どうぶつanimal

翻訳|animal

ブリタニカ国際大百科事典 小項目事典の解説

動物
どうぶつ
animal

植物とともに生物界の最も有力な界の一つ。従属栄養を営む生物群で,高等になるにつれて,運動系,感覚系,神経系が発達し,消化,排出,呼吸,循環などの器官が分化し,その細胞は細胞壁をもたないなどの特徴をもつ。しかし下等なものでは,動物と植物を厳密に区別することはできない。現生既知の全動物の種類は 140万種といわれ,約 20ほどの門に分けられる。

出典|ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について | 情報

デジタル大辞泉の解説

どう‐ぶつ【動物】

生物を二大別したときに、植物に対する一群。多くは自由に移動することができ、植物などの作り出した有機物を栄養として摂取する。細胞壁がなく、種々の器官が分化し、神経系感覚器官排出器官呼吸器官などをもつ。原生動物に分類されるものではほとんど植物と区別できないものもある。生態分布として、水生動物陸生動物とに分けられる。
人類以外の動物。特に、哺乳類をいう。獣類

出典|小学館デジタル大辞泉について | 情報 凡例

百科事典マイペディアの解説

動物【どうぶつ】

植物とともに生物界を代表する一群。植物が無機物を栄養とするのに対し,主として有機物を摂取(従属栄養)すること,運動,感覚の機能がすぐれること,さらに吸収,消化,排出,循環などの分化の程度が高いこと,また細胞はセルロースを主成分とする細胞膜をもたないことなどが特徴とされる。
→関連項目生物

出典|株式会社日立ソリューションズ・クリエイト百科事典マイペディアについて | 情報

世界大百科事典 第2版の解説

どうぶつ【動物 animal】

動物とは,他の生物を食べて独立生活をする生物の総称で,分類学上,植物界に対して動物界Animaliaを構成する。
【動物と植物】
 動物も植物もその体は,水,無機塩,炭水化物,脂肪,タンパク質からなるが,消耗した成分を補い,新しい組織をつくるなど,生活に必要なエネルギーを得るためには栄養分が必要である。緑色植物は栄養分としての炭水化物を,光のエネルギーを用いた炭酸同化(光合成)によって大気中の二酸化炭素と水からつくり出す能力をもっている(独立栄養)。

出典|株式会社日立ソリューションズ・クリエイト世界大百科事典 第2版について | 情報

大辞林 第三版の解説

どうぶつ【動物】

生物界を二大別した場合、植物に対する一群。一般的には細胞壁をもたない、クロロフィルをもたない、従属栄養である、運動性がある、などの特徴があるが、下等な生物では動物と植物との境界はあいまいで、両者に同時に分類されるものもある。
人間以外の動物。主として獣の類をいう。

出典|三省堂大辞林 第三版について | 情報

日本大百科全書(ニッポニカ)の解説

動物
どうぶつ
animal 英語 フランス語
Tierドイツ語

生物を三つの界に大別したとき、植物界、菌界に対し動物界を構成する一群をいう。現在地球上には100万~150万種もの動物が生存しており、形態も生活様式も多種多様である。今後さらに探究され続ければ、少なくとも100万種の動物が新たに発見されるであろうといわれている。[江上信雄・島田義也]

動物の特性

動物の特徴を、植物との対比でみてみると、次のようなものがあげられる。〔1〕栄養 植物は光合成や窒素固定によって無機分子から有機物をつくりだしエネルギー源とするが(独立栄養)、動物はこのような能力をもたず、植物や動物のつくりだした有機物を餌(えさ)として摂取する(従属栄養)。〔2〕運動 動物は運動器官(鞭毛(べんもう)、繊毛、筋肉と骨格)と神経をもち自由に動くことができる。〔3〕感覚 動物は外界からの刺激を感ずる受容器をもつ。〔4〕器官 動物は、体の各部が消化、排出、呼吸、循環、運動、内分泌、神経、感覚、免疫などの諸器官に分化している。〔5〕細胞壁 植物細胞はセルロースの細胞壁をもつが、動物細胞にはない。〔6〕炭水化物 動物細胞は炭水化物をグリコーゲンの形で蓄えるが、植物細胞はデンプンの形で蓄える。〔7〕細胞分裂 動物細胞は周りがくびれて2細胞に分裂するが、植物細胞は細胞板によって仕切られる。
 一般にはこのように、栄養、運動、感覚、器官のほか、細胞レベルでも〔5〕~〔7〕のような特徴が認められる。しかし例外も少なくない。オジギソウは感覚をもち運動を行うのに対し、海綿動物ではあまり顕著ではない。また、ミドリムシは鞭毛をもち運動性に富むが、葉緑体をもって独立栄養である。[江上信雄・島田義也]

動物の系統分類

地球上の多くの生物をいろいろな形質の差異や類似性から区別し整理することを分類という。分類の基本単位を種とよび、これはスウェーデンの博物学者C・リンネによって18世紀なかばに確立された。種とは、同一祖先から分化し、同じ形質を備えた繁殖可能な個体群のことをいう。その後、19世紀後半に、イギリスの博物学者C・ダーウィンによって進化論が唱えられ、生物を進化的な類縁関係に従って系統的に分類するようになった。すなわち、化石の研究、比較形態学、比較発生学、核型分析、タンパク質のアミノ酸配列、DNA(デオキシリボ核酸)の塩基配列の比較などによって系統関係が調べられ、系統樹がつくられている。近年の系統樹は、分岐法(一つの種が二つの種に分岐し、それが繰り返されることを示す)によるもの、あるいは幹と枝が離れたものになってきた。これは、種と種の中間的生物の化石が存在しないためで、たとえば、爬虫(はちゅう)類と鳥類の中間的生物とされてきた始祖鳥も、形態の再検討から原始的な鳥の一種であるという説が出ている。この系統分類によっておのおのの生物は、界・門・綱・目・科・属・種にまとめられている。その際、次に記す特徴を系統分類の基準とすることが多い。
〔1〕細胞の分化 単細胞の原生動物、多細胞で組織分化のない中生動物、組織・器官の分化した後生動物に分かれる。〔2〕発生段階 個体発生の段階により次の五つに分かれる。受精卵段階と考えられる原生動物、桑実胚(はい)にあたる中生動物、胞胚段階の海綿動物、嚢胚(のうはい)段階の腔腸(こうちょう)動物、嚢胚以上に発生し、3胚葉からなる器官を分化させた三胚葉動物がそれである。〔3〕消化管のでき方 原口がそのまま将来の口になる前口(旧口)動物(扁形(へんけい)・袋形(たいけい)・紐形(ひもがた)・環形(かんけい)・軟体・節足・触手動物)と、原口は肛門(こうもん)となり将来の口は反対側にできる後口(新口)動物(毛顎(もうがく)・棘皮(きょくひ)・半索・原索・脊椎(せきつい)動物)に分かれる。〔4〕中胚葉のでき方 原則的に、前口動物では、卵割腔に2個の原中胚葉細胞が落ち込み、それが増殖して中胚葉を形成する(原中胚葉幹)。後口動物では、中胚葉は原腸の膨らみから切り出される(原腸体腔幹)。〔5〕幼生の比較 幼生の類似は近縁性を示すと考えられる。環形動物と軟体動物はともにトロコフォラ幼生を経る。棘皮動物のナマコのアウリクラリア幼生は、半索動物のギボシムシのトルナリア幼生と似ている。〔6〕体腔 三胚葉性動物は、体腔が卵割腔に由来する原体腔類と、中胚葉に囲まれた体腔をもつ真体腔類に分かれる。〔7〕脊索・脊椎の存在 これらの有無も分類の重要な基準となる。〔8〕タンパク分子のアミノ酸配列 チトクロムcやヘモグロビンなどのアミノ酸配列の比較によって類縁性が再検討されている。以上のような基準をもとに動物は約15から23の門に分類されている。
(1)原生動物門Protozoa 単細胞で、収縮胞や食胞などの発達した細胞内器官をもつ。群体を形成するものもある。鞭毛、繊毛、仮足(かそく)により運動する。アメーバ、ヤコウチュウなど約5万種。
 なお、分類上、原生動物を一門ではなく、動物や植物に匹敵する生物群、あるいはプロチスタ群に属する一群とする考え方もある。
(2)中生動物門Mesozoa 多細胞であるが特別に分化した器官をもたない。ある種の多細胞生物が退化したものと考えられ、原生動物から後生動物へ進化したものとは認めにくい。門としない人もいる。ニハイチュウ(タコの腎臓(じんぞう)に寄生)など約50種。
(3)海綿動物門Porifera 胞胚段階の動物で、地質時代を通じて進化しなかったと考えられる。消化管や筋肉、神経はないが、骨片が分化している。襟細胞や遊走細胞があるので、鞭毛虫から進化したものとみなされる。しかし、嚢胚・三胚葉動物への進化の一過程にあるとは考えられていない。カイメンなど約4500種。
(4)腔腸動物門Coelenterata 体制は放射相称で、内外の2胚葉からなる。嚢胞段階にある。感覚器や筋肉が発達し、中枢のない散在神経をもつ。また、刺細胞をもつのが特徴である。クラゲ、サンゴなど約1万種。
(5)有櫛(ゆうしつ)動物門Ctenophora 腔腸動物と同様に、体制は放射相称で、2胚葉からなる。嚢胞段階にある。刺細胞をもたず、繊毛が集まってできた櫛板をもつ。フウセンクラゲ、クシクラゲなど約100種。
(6)扁形動物門Platyhelminthes 原体腔をもつが、きわめて不明瞭(ふめいりょう)である。消化管は未分化で肛門をもたない。神経系は籠(かご)状である。螺旋(らせん)卵割を行うことから、紐形・環形・軟体動物門との類縁性が示唆されている。最近のリボゾームRNAの研究では、この門は変化に富み、とくにプラナリア類はすべての多細胞動物のうちもっとも原始的なものであるといわれている。プラナリア、肝蛭(かんてつ)など約7000種。
(7)紐形動物門Nemertinea 扁形動物門と多くの点で類似するが、肛門と閉鎖血管系をもち、一部の器官(腸、生殖腺(せん))に体節制がある点で異なる。排出器は原腎管。ヒモムシなど約1000種。
(8)曲形動物門Kamptozoa 一見コケムシ類(触手動物)と似ている。消化管はU字状に曲がり、口と肛門をもつ。循環系はなく、原腎管で排出する。原体腔をもつ。ペディケリナなど約70種。
(9)袋形動物門Aschelminthes 従来の線形動物と輪形動物をあわせて袋形動物とよぶ。体表はクチクラで覆われ、原体腔(擬体腔)が発達している。口と肛門をもつが、寄生性のものは消化系が退化している。ヘテロゴニーheterogony(異常生殖または周期性単性生殖)をするものが多い。ワムシ、回虫など約1万3000種。
(10)軟体動物門Mollusca 閉鎖血管系であり、腎管をもつ。体は頭部、足、内臓塊の3部に分かれる。中枢神経系や中腸腺が発達している。幼生はトロコフォラ、ベリジャーを経る。二枚貝類、ウミウシ(貝殻が退化)、カタツムリ(肺呼吸)、イカ、タコ、アンモナイト(絶滅種)など約10万種。
(11)環形動物門Annelida 体は、同じような構造をもった多数の体節(等体節)からなる。真体腔が発達し、体壁には環状筋と縦走筋がある。排出器は腎管(体節器)で、梯子(はしご)状神経節、閉鎖血管系をもつ。ゴカイ、ミミズ、ユムシなど約7000種。
(12)有爪(ゆうそう)動物門Onychophora 脚(あし)の末端に2個の鉤(かぎ)づめをもつ。粘液腺をもち、攻撃、捕食に用いる。呼吸器官として気管をもつ。開放血管系で、排出系は腎管である。カギムシなど約80種。
(13)緩歩動物門Tardigrada 後生動物としては最小で、体長は1ミリを超えるものはない。梯子状神経系をもつ。体表はクチクラで覆われ、循環系と呼吸系はない。乾燥させると体は収縮し、乾眠状態になり、4~7年は耐える。これを湿らせると、ただちに回復し、活動する。乾眠状態では100℃の高温や零下250℃の低温にも耐え、放射線照射や高圧、真空状態にも強い。クマムシなど約280種。
(14)舌形(したがた)動物門Linguatulida 脊椎動物に内部寄生する。体表はクチクラで覆われ、循環器を欠き、神経系の発達も悪い。シタムシなど約60種。
(15)節足動物門Arthropoda 動物界最大の門で、全動物種の7、8割を占める。体は、部分により分化した体節(不等体節)からなる。キチン質の外骨格があり、梯子状神経管、開放血管系をもつ。腎管またはマルピーギ管で排出する。脱皮、変態をするものが多い。エビ・カニの甲殻類(幼生はノープリウス、ゾエアなどを経る)、クモ・ダニ・トンボなどの昆虫、サンヨウチュウ(絶滅種)など約100万種。
(16)星口(ほしぐち)動物門Sipunculoidea 細長い吻(ふん)をもつ。体節制はない。排出器は一対の腎管である。トロコフォラ幼生を経る。ホシムシなど約280種。
(17)触手動物門Tentaculata 原腸体腔幹であるが前口動物。ある種の腕足類(古生代に繁栄した生きた化石)の幼生は毛顎動物と似ている。コケムシ類、シャミセンガイやホオズキガイなどの腕足類など現存は約5000種、化石には約2万種以上ある。
(18)毛顎動物門Chaetognatha 目や、剛毛の生えた口をもつ。循環・排出系はないが、体腔のでき方は棘皮動物、原索動物に似る。プランクトンのヤムシなど約60種。
(19)有鬚(ゆうしゅ)動物門Pogonophora 左右相称で、体は前体、中体、後体の3部に分かれる。前体には触手冠と脳がある。クダヒゲムシなど約70種。
(20)半索動物門Hemichordata 脊索と相同と考えられる盲管と、咽頭(いんとう)に鰓裂(さいれつ)をもつ。神経系が背側にあり、前述(1)~(19)の無脊椎動物と異なる。幼生のトルナリアは、ナマコの幼生アウリクラリアに似る。ギボシムシなど約100種。
(21)棘皮動物門Echinodermata 幼生は左右相称であるが、成体は放射相称となる。水管系、内骨格をもち、管足で移動する。ヒトデ(ピピンナリア幼生を経る)、ウニ(プルテウス幼生)、ナマコ(アウリクラリア幼生)など約6500種。
(22)原索(脊索)動物門Prochordata 発生のある時期または一生、脊索をもつ。鰓裂、内柱があり、神経管が発達する。ホヤなどの尾索綱と、脊椎動物の原型と考えられる体制(発達した脊索と神経管)をもつナメクジウオの頭索綱に分かれる。約1600種。
(23)脊椎動物門Vertebrata 発生初期に脊索を生じ、のちに脊椎に置き換わる。脳が分化している。消化系、循環系、呼吸系などの器官系が発達する。胚が水中で発生する魚類と両生類では、胚は羊膜に包まれていない(無羊膜類)。胚が陸上で発生する爬虫類、鳥類、哺乳(ほにゅう)類の胚は羊膜に包まれて保護されている(羊膜類)。鳥類、哺乳類は恒温動物で、カモノハシなど一部を除いて哺乳類は胎生である。約4万3000種。
 なお、分類上、原索動物と脊椎動物についてはそれぞれを門とせず、脊索動物を1門とし、尾索動物、頭索動物、脊椎動物を3亜門としてこの門に含める考え方や、このうち脊椎動物亜門を設けず、無顎類と顎口類の2亜門を加えて合計4亜門とする研究者もある。[江上信雄・島田義也]

動物の起源と進化

地球上に最初に生物が現れたのは30億~35億年前のことである。南アフリカではそのころの岩石から、細菌や細菌の祖先であるエオバクテリウムの化石がみつかっている。原始大気中のメタン、水素、アンモニア、水蒸気などが、紫外線や空中放電によってアミノ酸となり、さらにタンパク質がつくられた。それに脂質などのコロイド粒子が結合し、周囲の海水から独立したコアセルベートになった。コアセルベートが酵素や核酸を取り込んで代謝や自己増殖能を獲得することにより、生物が生まれたと考えられている。その後、核をもった細胞(真核細胞)が現れ、菌類や植物や動物に分化していったと思われる。また、単細胞動物の鞭毛虫が群体をつくり、一部が分化して多細胞動物が進化してきたと考えられている。
 地質時代は、化石をもとにした生物の進化過程に大きな段階の認められるところを境にして、先カンブリア時代(約46億~5億7500万年前)、古生代(5億7500万~2億4700万年前)、中生代(2億4700万~6500万年前)、新生代(6500万年前~現在)の四つに分けられる。先カンブリア時代には、藍藻(らんそう)類が増加し、末期には海産無脊椎動物が出現した。古生代に入ると、動物の化石が豊富にみつかっている。古生代の前半には、節足動物の三葉虫、触手動物の腕足類、軟体動物のオウムガイ、腔腸動物のサンゴ、棘皮動物のウミユリなど、海産無脊椎のほとんどの門の動物が繁栄し、やがて魚類が出現した。三葉虫は世界に広く分布し示準化石となっている(現在のカブトガニは三葉虫と似た体制をもつ生きた化石である)。古生代中期には魚類が繁栄し、陸地の拡大と高温多湿な気候により植物が上陸した。続いて魚類のなかに、肺魚や総鰭(そうき)類(シーラカンス)などのように、直接肺に空気を送ることができ、じょうぶなひれで歩くことのできるものが出現し、進化して両生類となった。古生代後半には、陸生の昆虫の繁栄とともに、羊膜をもつ卵を産む爬虫類が出現した。また原生動物のフズリナも急激に増加した。古生代末期には、地殻の変動や氷河の発達によって多くの生物が絶滅してしまった。しかし、生き残った生物は中生代の温暖で乾燥した気候のなかで急に発展した。とくに爬虫類が全盛となり恐竜が繁栄した。続いて哺乳類や鳥類(始祖鳥)も現れた。海中には、示準化石となっている軟体動物のアンモナイトが爆発的に進化した。しかし多くの生物は新生代には絶滅した。新生代には、現存のすべての生物の祖先が現れ、とくに哺乳類が広く適応放散し、やがて人類が出現し発展するようになった。[江上信雄・島田義也]

動物組織の構造と機能

動物は、従属栄養、すなわち他の生物が合成した有機物を栄養とするため、消化系、循環系、排出系が体内に発達し、高等動物ではさらに運動系、感覚系、神経系が発達している。これらの器官系は、上皮組織、結合組織、筋肉組織、神経組織からなる。〔1〕上皮組織 体の外表面、消化管や血管の内表面を覆っていて、内部組織の保護や、吸収、分泌、感覚、生殖細胞の形成などの働きを行っている。〔2〕結合組織 組織や器官の間を満たし、それらを結合したり支持したりし、多量の細胞間物質を含む。腱(けん)や靭帯(じんたい)、腸間膜、軟骨、骨組織、血液、リンパなどを構成している。〔3〕筋肉組織 収縮性に富み、横紋筋と平滑筋がある。横紋筋は骨格筋や心筋にみられ、節足動物の運動器官にもあり、急激な運動に適する。二枚貝の貝柱の横紋は斜めであり斜紋筋とよばれる。〔4〕神経組織 神経細胞と神経膠(こう)から構成され、刺激の伝達を行う。一般に脊椎動物の神経突起は、髄鞘(ずいしょう)と神経鞘という二重の鞘(さや)に包まれ(有髄神経)、刺激の伝達は速い。無脊椎動物の神経の多くは髄鞘がなく(無髄神経)、刺激の伝達は遅い。
 以上の四つの組織が組み合わさって、いくつかの器官をつくっている。高等動物では、多数の器官が集まって、次のような器官系をつくり、全体としてまとまった働きをする。
(1)消化系 高等動物は細胞外消化を行うが、原生動物や海綿動物の襟細胞は、細胞内に食胞をつくり細胞内消化を行う。腔腸動物や扁形動物は肛門がない。扁形動物より高等な動物では消化器官が発達し、ある動物は特有の器官をもつ。たとえば、ミミズは(そのう)や砂嚢、カタツムリは歯舌(しぜつ)をもつ。寄生や共生によって消化器官が退行する例が多い。
(2)呼吸系 下等な動物は体表を通してガス交換を行うが、体制が複雑な高等動物では呼吸器官が発達している。原生・海綿・腔腸・扁形・陸生の環形動物は、体表から酸素を取り込んでいる。水生の環形・軟体・節足(甲殻類)・原索動物、そして脊椎動物のうち魚類や両生類の幼生(オタマジャクシ)は、えら呼吸をする。トンボの幼虫のヤゴやドジョウは腸呼吸もできる。肺魚は乾期になるとうきぶくろで呼吸ができる。一方、陸生の節足動物は気管呼吸をする。昆虫類は、脊椎動物と異なり、ガスの運搬は気管系、栄養分は血管系という分業を確立している。肺呼吸は脊椎動物にみられる。
(3)循環系 栄養分の運搬やガス交換を行う。温度や塩濃度が一定な海中にすむ小動物は循環系をもたないことが多い。体が大きくなるにつれ、体内に海水を入れる水管系を発達させ(クラゲ)、さらに進化して体液を体内に閉じ込める体制を確立し、陸上生活を可能とした。血管系には、開放血管系(節足・軟体動物)と閉鎖血管系(環形・脊椎動物)がある。脊椎動物の循環系も進化に応じてすこしずつ異なる。魚類の心臓は1心房・1心室。両生類、爬虫類は2心房・1心室で、肺循環と体循環の区別がある。鳥類、哺乳類は2心房・2心室で、肺循環できれいになった血液が体循環する。酸素を運ぶ呼吸色素には、鉄を含む赤いヘモグロビン(脊椎動物、ナマコ、ミミズ)や銅を含むヘモシアニン(甲殻類、軟体動物)などがある。
(4)排出系 水と老廃物を排出する器官系で、多くは浸透圧調節も兼ねる。原生動物では細胞内器官の収縮胞が、原体腔をもつ動物では原腎管が、真体腔をもつ動物では腎管が排出器である。軟体動物のボヤヌス器や甲殻類の触角腺はともに腎管の変化したものである。昆虫はマルピーギ管、線虫類は側線管を発達させている。脊椎動物の排出器官は腎臓で、高等になるほど、前腎・中腎・後腎と分化してゆく。タンパクの分解物で細胞に有害なアンモニアは、無脊椎動物や硬骨魚類ではそのままの形で、軟骨魚類、両生類や哺乳類はアンモニアを尿素に変えて、爬虫類、鳥類、昆虫は尿酸に変えて排出する。
(5)内分泌系 脊椎動物の場合、下垂体、甲状腺、副腎、生殖腺などの内分泌器官から分泌された種々のホルモンは、エネルギー生産の調節、成長や変態の促進、生殖活動および体内環境の調節などの恒常性の維持を行う。無脊椎動物には、性ホルモンのほか、体色変化・脱皮調節のホルモン(甲殻類のサイナス腺)、変態調節のホルモン(昆虫のアラタ体や前胸腺)がみつかっている。
(6)神経系 神経系は海綿動物にはないが、腔腸動物より高等な動物にある。腔腸動物のヒドラの神経細胞は全身に散在し、散在神経とよばれる。伝達速度は遅い。扁形動物以上の神経細胞は神経節をつくっている(集中神経系)。クラゲや棘皮動物の神経節は環状につながっているので環状神経節、環形・節足動物の神経節は対(つい)になっていて、梯子状神経節という。原索動物と脊椎動物の神経系は、神経節が管状で体の中軸に集まり、管状神経節とよばれ、脳が発達している。
(7)感覚系 光、音、重力、化学成分、温度、圧力などの刺激を受容する。視覚を例にとると、ミドリムシには色素が集まった眼点があり、ミミズは体表の視細胞が光を感じる。アワビはピンホール式の杯状眼を、タコはカメラ眼をもつ。節足動物は複眼と単眼をもつ。
(8)免疫系 個体維持のため、細菌や老朽細胞に対する防御反応をつかさどる器官系。脊椎動物では、骨髄、胸腺(哺乳類)、ファブリキウス嚢(鳥類)、脾臓(ひぞう)や腎臓、無脊椎動物では、腎臓や腸間膜、消化管などの諸器官に付随する造血器やリンパ組織で、マクロファージや高等な動物では特殊化されたリンパ球が免疫担当細胞として分化する。無脊椎動物ではレクチン、補体、ある種の抗菌物質が防御因子として働き、脊椎動物では免疫グロブリンが現れる。海綿動物の同種細胞の凝集反応、腔腸・環形・棘皮・原索動物の異種および同種移植片拒絶反応は免疫反応の一種である。
 そのほか、運動・生殖・骨格系の器官が各動物に発達している。特殊器官としては、横紋筋が変化したシビレエイの発電器、求愛のシグナルとなるホタルの尾部発光器などがある。[江上信雄・島田義也]

生殖と発生

生殖とは新しい個体をつくりだすことで、無性生殖と有性生殖がある。無性生殖は下等動物の一部にみられ、大部分の動物は有性生殖を行う。しかし、クラゲやウミタルは、有性生殖と無性生殖を交互に繰り返すメタゲネシスmetagenesis(真正世代交代)を行う。二分裂による増殖は原生動物やイソギンチャク、出芽による増殖はカイメン、ゴカイ、コケムシ、胞子により増殖する方法はマラリア原虫にみられる。有性生殖の確立によって、遺伝子の新しい組合せをもつ個体が発生し、変化する環境により広く適応できる可能性が生まれた。ゾウリムシは二つの個体が接合し核を交換する。高等動物では、卵と精子の合体によって新個体が生まれる。多くの動物は雌雄異体であるが、ミミズやカタツムリは、一つの個体内に卵と精子をつくる雌雄同体である(しかし、自家受精は一般に行わない)。ミツバチやワムシでは、有性生殖のほか、卵が受精をしないで単為発生して新個体が生じ、タマバエや肝蛭は、幼生体内の卵が単為発生を始める幼生生殖を行う。ワムシのように有性生殖と単為生殖を繰り返すことをヘテロゴニー、タマバエのように有性生殖と幼生生殖を繰り返すことをアロイオゲネシスalloiogenesis(混合生殖)とよぶ。
 有性生殖を行う動物では、配偶者をうまくみつけるためのいろいろの仕組みがある。たとえば、昆虫では一般に雄が目だつ色彩や形態をもち、雌は性フェロモンを分泌するものが多い。ある種の鳥は、求愛のさえずりやダンスなど一連の配偶行動をする。
 一方、発生とは、受精卵が細胞分裂を繰り返し、分化し、組織・器官を形成し、胚や幼生を経て成体となる過程をいい、胚発生には各動物共通の点が多い。受精卵は、卵割とよばれる細胞分裂をして細胞数を増やす。卵割を続けた卵は、内部に大きな空所(卵割腔)をもつ胞胚になる。その後、一部が内側に向かって陥入し原腸をつくり、嚢胚となる。原腸はのちに消化管となる。嚢胚をつくる壁を胚葉といい、外側の外胚葉、内側の内胚葉に分かれ、腔腸動物より高等な動物では、さらに中胚葉が分化する。外胚葉は表皮や神経に、中胚葉は脊索や骨、筋肉、腎臓、生殖器に、内胚葉は消化管や内分泌腺、肺やえらに分化してゆく。
 発生中の胚は環境の変化や外敵に弱いので、下等な動物は多くの卵を産み、種属を維持している。脊椎動物の爬虫類や鳥類などの陸上に産卵するものは乾燥を防ぐため、胚を保護する胚膜が形成されている。哺乳類では、胚発生は母体内で進行し、胎盤を通して直接母体から栄養を受け取る胎生が発達している。このような胚膜の形成や胎生の発達が、動物の生活圏を水中から陸上へ広げたと考えられる。[江上信雄・島田義也]

動物の分布

動物の地理的分布は、哺乳類、鳥類をもとにして、旧北区(ヨーロッパ、アジアの大部分、アフリカ北部)、新北区(北アメリカ大陸とグリーンランド)、エチオピア区(サハラ砂漠以南のアフリカ、アラビア半島)、オーストラリア区(オーストラリア、ニューギニア島)、新熱帯区(南アメリカ、中央アメリカ、西インド諸島)、東洋区(中国南部、インド、東南アジア)に区分されている。
 エチオピア区と東洋区には、サイ、ゾウ、旧世界ザル、大形のネコ科動物など似た類が多い。これは、新生代第三紀まではアフリカ大陸とインドが陸続きであったことと関係している。オーストラリア区には、カンガルー、コアラなどの有袋類、カモノハシ、ハリモグラなどの単孔類、ゴクラクチョウなど特異的な動物が多い。大陸移動説によれば、古生代には一続きであった陸地(ゴンドワナ大陸)が中生代に移動し始め、単孔類と有袋類以外の哺乳類が栄えていない新生代第三紀にオーストラリア大陸が分離した。その後、北の大陸ではより高等な動物が進化し前述の動物は絶滅したが、大陸から離れたオーストラリアでは滅びることなく生き残ったと考えられる。もうすこし早く大陸から分離したマダガスカル島やガラパゴス諸島に特異的な生物がみられることも進化を考えれば理解できる。東洋区とオーストラリア区の境界をワラス線(ウォーレス線)とよぶ。[江上信雄・島田義也]

日本の動物

日本は大部分が旧北区で、沖縄以南が東洋区に属す。この境界が渡瀬(わたせ)線で種子島(たねがしま)と奄美(あまみ)大島の間に引かれる。本州と北海道もブレーキストン線で分かれる。北海道にはヒグマ、ナキウサギ、エゾライチョウなどシベリアと同種の動物がいる。本州は中国の動物相と似ていて、ツキノワグマ、シカ、キジがいる。また、両生類と無脊椎動物の分布から宗谷(そうや)海峡に境界を置く八田(はった)線もある。対馬(つしま)は、アカネズミやツシマテンなどの日本本土と共通の種と、チョウセンモグラ、キタタキなど朝鮮半島と共通の種がいることで、動物分布の点から興味深い。最近、DNAの塩基配列や酵素の多型を調べることによって、本州の動物(ネズミ、メダカ)も北型と南型に分かれるものがあることが明らかとなった。[江上信雄・島田義也]

動物の行動

動物の特性の一つは、環境からの刺激を感じ、反応し、行動することである。刺激に対し一定の方向に行動することを走性という。刺激には、光、重力、水流、温度、化学物質などがある。ゾウリムシは重力と反対の方向へ、また電気に対しては陰極へ移動する。昆虫や魚の多くは光の方向へ、ミミズは光を避けるように移動する。高等な動物では、脳が発達し、その行動は本能行動、学習行動、知能行動などに分けられる。経験や学習なしに生まれつきの性質として遺伝的に決まった行動を本能行動という。たとえばミツバチは分業して巣づくりと育児をする。また、臀(しり)振りダンスをして餌の所在を知らせる。カイコガの雄は、雌の分泌する性フェロモンにひかれて雌に近づく。サケは、生まれた川をさかのぼって産卵する。トゲウオの雄は巣をつくり求愛のダンスをするが、これも本能行動である。またガチョウの雛(ひな)は、最初に出会う動くものを親と認知し、ついて歩く。この認知能力は孵化(ふか)直後の特定の時期にのみみられ、刷り込みという。脳の発達した動物では、さらに経験に基づく行動、すなわち条件反射、学習、知能行動が可能となる。条件反射は、イヌを使った当時のソ連の生理学者パブロフの実験が有名であるが、タコでも条件づけの実験に成功している。学習では、経験したことを記憶することが重要である。マウス、タコ、ミツバチ、ミミズなど広い動物群で学習の効果がみられる。大脳皮質の発達した哺乳類は、経験や学習をもとに、未経験のことに対して、その事態に適した新しい行動をする能力(知能)をもっている。[江上信雄・島田義也]

動物と環境

生物と自然環境は互いに作用しあい、また生物間も捕食や寄生、共生などの関係で結び付いている。
 多くの動物は普通は同じ仲間で群集をつくって生活をしている。いつもは単独で生活していても、生殖期(ウニ、ヒトデ)、移動期(バッタ)、冬眠時(ヘビ、コウモリ)に群集をつくるものがいる。個体群の移動は季節に依存し、餌や生殖などの環境を求めて行う。一定地域内の個体群の動物では、個体間に優劣の順位があったり(サル、カラス、メダカ)、リーダーがいて秩序のある社会集団を形成する場合(ニホンザル、アリ、ミツバチ)がある。また、縄張り(テリトリー)があって餌の捕獲や繁殖に役だつ。
 一方、同じ環境内にすむ異なった動物の間に、お互いに影響を与え合っている例がある。その場合の利害関係は食物とすみ場所の獲得であることが多い。生存競争の結果、多くの場合一方が消えていく。しかし、魚のイワナとヤマメは同じ川でも上流と下流に分かれて生活し、餌の競争を避けている(すみ分け)。カワウとヒメウは同じ場所にすむが、とる餌が異なり競争を回避している(食い分け)。そのほか、個体群の相互作用には、お互いまたは一方が利益を受ける共生関係がある。アリとアブラムシはともに利益を受ける相利共生、サメとコバンザメは後者のみ利益を受ける片利共生をしている。ダニや回虫は動物に寄生している。生物間でもっとも重要な関係は捕食関係である。捕食者と被食者の関係は網の目のように複雑である。植物は草食動物に食べられ、草食動物は肉食動物に食べられる。その肉食動物はさらに大形の肉食動物に食べられるというような食物連鎖がみられる。動物の死体や排出物は、カビや細菌によって分解されて、食物連鎖の源である植物の養分となり、生態系のなかでは栄養物質の循環関係がみられる。普通、生態系を構成している生物の種類組成や個体数などはつり合いがとれている。[江上信雄・島田義也]

動物と文明

安定している生態系も、火山の噴火や台風などの自然災害によって平衡が破れる。しかし、もっとも影響が大きいのは人間による人為的破壊である。大気・水質・土壌の汚染、ダム建設による生息地の破壊や乱獲によって絶滅した動物は少なくない。最近400年間にオーロックスやニホンオオカミなど30~40種の哺乳類、リョコウバトやドードーなど100種の鳥類が滅び、さらに数百種の動物(ジャワサイ、イリオモテヤマネコ、トキなど)が滅びつつあるといわれる。また、ウシガエルの餌として輸入したアメリカザリガニのように、原産地から移動し、他の地区に適応し繁殖した帰化生物も生態系を破ることが多い。これは天敵がいないため、急激に数が増え、植物や下位の動物を食い荒らすからである。
 近年、自然の生態系の安定化を図るため、環境の保全と自然の保護に対する要求が高まってきた。その結果、自然公園の設定や野生動物捕獲禁止の法律を制定し、絶滅の危機に瀕(ひん)している動物を天然記念物に指定して保護している。[江上信雄・島田義也]
『石田寿老他著『現代動物学』(1972・裳華房) ▽江上信雄・飯野徹雄著『生物学』上下(1984・東京大学出版会) ▽アテンボロー著、日高敏隆他訳『地球の生きものたち』(1983・早川書房) ▽江上信雄他著『UPバイオロジー・シリーズ』(1975~・東京大学出版会) ▽内田享監修『動物系統分類学』全10巻、17冊(1961~ ・中山書店) ▽内田享他監修『現代生物学大系』全14巻(1965~ ・中山書店)』

出典|小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について | 情報 凡例

世界大百科事典内の動物の言及

【植物】より

…生物界を動物と植物に二大別するのは,常識の範囲では当然のように思えるが,厳密な区別をしようとするとさまざまな問題がでてくる。かつては生物の世界を動物界と植物界に二大別するのが常識だったが,菌類を第三の界と認識すると,それに対応するのは狭義の動物(後生動物),狭義の植物(陸上植物)ということになり,原生動物や多くの藻類などは原生生物という名でひとまとめにされ,また,これら真核生物に比して,細菌類やラン藻類は原核性で,原核生物と別の群にまとめることができる。…

【生物】より

…いずれにせよ,エネルギー転換にかかわるエネルギーのシステムと,それの方向を指示し,自己保存,自己増殖を行う情報のシステムとが組み合わさったとき,初めて,生物が生じたことは確かである。
[生物の分類]
 生物は動物と植物に大別されるが,これは外界からの物質やエネルギーのとりこみ方の違いに基づくものである。すなわち,主要なエネルギー源として太陽エネルギーを,体を構成する物質源としては無機物質をとりこむ方式で生きるものが植物であり,エネルギー源,物質源を有機物質に頼るのが動物であると考えてよい。…

※「動物」について言及している用語解説の一部を掲載しています。

出典|株式会社日立ソリューションズ・クリエイト世界大百科事典 第2版について | 情報

動物の関連キーワード富士山菓子麺麭平羽根海羊歯柄長網壺海綿蓮葉菓子麺麭蔓長手蔓藻蔓大和偕老同穴疣底介微塵子蔓細手蔓藻蔓クロロフィル飯島寒天海鼠分蝌蚪海鞘大和寄居蟹捩革海百合無棘琵琶蟹毛脚小島蟹飯島嚢海胆疣肢寄居蟹裸革海百合猫脊微塵子浜辺団子虫

今日のキーワード

かりゆし

1 沖縄方言で「縁起がよいこと」「めでたいこと」を表す語。2 「かりゆしウエア」の略。...

続きを読む

コトバンク for iPhone

コトバンク for Android

動物の関連情報