エルミート行列(読み)えるみーとぎょうれつ

日本大百科全書(ニッポニカ) 「エルミート行列」の意味・わかりやすい解説

エルミート行列
えるみーとぎょうれつ

正方行列Aがその随伴行列Aに等しいとき、つまりA=Aであるとき、フランスの数学者エルミートの名をとり、Aをエルミート行列という。ここで、随伴行列とは、転置行列(行と列とを入れ換えた行列)の成分の複素数共役複素数に置き換えたものをいう。たとえば、二次正方行列

に対して、随伴行列は

である。

 実エルミート行列は対称行列(主対角線に関して対称な位置にある二つの要素がそれぞれ等しい行列)にほかならない。

 n次列ベクトル全体Cnのつくる線形空間の内積

とn次正方行列Aとに、
  (Ax,y)=(x,*Ay) (x,y∈Cn)
という関係がある。これを用いてエルミート行列Aは
  (Ax,y)=(x,Ay) (x,y∈Cn)
を満たす正方行列Aと定義してもよい。

 一般にA*A=*AAを満たす正方行列Aを正規行列という。エルミート行列はユニタリー行列(複素内積を変えない行列)とともに正規行列の重要な例になっている。また、正方行列Aが正規行列であるための必要十分条件は、U-1AUが対角行列(主対角線外の成分がすべてゼロとなる行列)になるようなユニタリー行列Uがあることであるから、エルミート行列Aは、ユニタリー行列UでU-1AUを対角行列にすることができる。

 エルミート行列は、固有値がすべて実数となる正規行列であると定義してもよい。とくに、エルミート行列の固有値がすべて正、非負、負、非正に従い、それぞれ、正値、半正値、負値、半負値エルミート行列という。エルミート行列A=(aij)i,j=1,……,nに対し、
  Ak=(aij)i,j=1,……,k (k=1,……,n)
とすると、Aが正値または負値であるためには、それぞれ、
  detAk>0または(-1)kdetAk>0
  (k=1,……,n)
であることが必要十分条件である。ここでdetAkはAkの行列式を表す。

[菅野恒雄]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

ブリタニカ国際大百科事典 小項目事典 「エルミート行列」の意味・わかりやすい解説

エルミート行列
エルミートぎょうれつ
Hermitian matrix

シャルル・エルミートは,整数を表現する問題を研究するために,エルミート形式と呼ばれる 2次形式を導入したが,このエルミート形式の係数行列がエルミート行列である。複素数を要素とする正方行列 H=(aij) に対して,その共役転置行列H*と表す)をつくったとき,HH*すなわち aji の共役複素数)がいえれば,行列 H をエルミート行列と呼ぶ。たとえば
はエルミート行列となる。つまり, となり,すべての ij について, が成り立つからである。この例からもわかるように,エルミート行列では,左上から右下への対角線上にある要素は,それ自身に共役であるから,実数でなければならない。aij がすべて実数の対称行列はエルミート行列である。

出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報

世界大百科事典(旧版)内のエルミート行列の言及

【エルミート形式】より

n次正方行列Xに対して,Xの各成分の複素共役をとった行列の転置行列tX*で表すものとすると,条件ijajiは,AA*と表される。このような行列をエルミート行列Hermitian matrixという。行列Aの階数rHの階数という。…

【行列】より

…Āの転置行列A*tĀがAの逆行列になるとき,Aはユニタリ行列であるという。A*AのときAはエルミート行列であるという。【永田 雅宜】。…

※「エルミート行列」について言及している用語解説の一部を掲載しています。

出典|株式会社平凡社「世界大百科事典(旧版)」

今日のキーワード

プラチナキャリア

年齢を問わず、多様なキャリア形成で活躍する働き方。企業には専門人材の育成支援やリスキリング(学び直し)の機会提供、女性活躍推進や従業員と役員の接点拡大などが求められる。人材の確保につながり、従業員を...

プラチナキャリアの用語解説を読む

コトバンク for iPhone

コトバンク for Android