コトバンクはYahoo!辞書と技術提携しています。

行列 ぎょうれつ matrix

翻訳|matrix

6件 の用語解説(行列の意味・用語解説を検索)

ブリタニカ国際大百科事典 小項目事典の解説

行列
ぎょうれつ
matrix

マトリックスともいう。 mn をある2個の整数 (mn≧0) とするとき,数または数を表わす文字 (要素 element,項,あるいは成分という) から成る配列mn 行列,または m×n 行列,あるいは mn 列の行列という。

本文は出典元の記述の一部を掲載しています。

出典|ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

デジタル大辞泉の解説

ぎょう‐れつ〔ギヤウ‐〕【行列】

[名](スル)
多くの人や物などが列をつくって並ぶこと。また、その列。「店頭に行列ができる」「行列して開場を待つ」
供奉(ぐぶ)の列をなして行くこと。また、その列。
数字や文字を方形に並べたもの。例えば、2行3列の行列とは、三つ横に並ぶ数の組を縦に二つ並べたものをいい、その数字や文字を要素とよぶ。マトリックス

出典|小学館 この辞書の凡例を見る
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

百科事典マイペディアの解説

行列【ぎょうれつ】

マトリクスとも。m×n個の数a(/i)(/j)(i=1,2,…,m,j=1,2,…,n)をm行n列に並べた(式1)をm行n列または(m,n)型の行列という。Aを単に(a(/i)(/j))と略記することもある。
→関連項目代数学マトリックス力学

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. ご提供する『百科事典マイペディア』は2010年5月に編集・制作したものです

世界大百科事典 第2版の解説

ぎょうれつ【行列 matrix】

数や関数などを,長方形の形にまとめて括弧をつけたものを行列という。シルベスターJ.J.Sylvesterが1850年ごろ使い始めたもので,マトリックスmatrixと命名された。しかし,1845年のケーリーA.Cayleyの一次変換についての論文にすでにこの概念の萌芽があった。日本語訳は,母式,方列などを経て,高木貞治の命名による行列になった。括弧( )のほか,∥∥,[ ]の記号が使われることもある。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

大辞林 第三版の解説

ぎょうれつ【行列】

( 名 ) スル
多くの人が、順序よく並ぶこと。また、その列。 「 -ができる」 「開店前から-して待つ」
儀仗ぎじようを整え、供奉ぐぶの列を作って行くこと。 「大名-」
〘数〙 〔matrix〕 多数の数あるいは文字を長方形に並べたもの。並べた数あるいは文字をその行列の成分または要素といい、横並びの要素を行、縦並びの要素を列という。

出典|三省堂
(C) Sanseido Co.,Ltd. 編者:松村明 編 発行者:株式会社 三省堂 ※ 書籍版『大辞林第三版』の図表・付録は収録させておりません。 ※ それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)の解説

行列
ぎょうれつ
matrix

m、nを自然数としてmn個の数aij(i=1, 2,……, m ; j=1, 2,……, n)を

と並べたものをm×n型行列という。この型の行列の全体をMと記すことにする。たとえば、すべてのaijがゼロである行列はMの元であるが、とくに零行列とよばれてOと表される。
 A、BをMの元、すなわちm×n型行列とする。AとBとの和A+Bを成分ごとの和

で定義する。
 するとMはこの演算で閉じており、加群をなすことが、ごく簡単に示される。単位元はOである。次にcを数(スカラー)とし、cとAとの積cAを(i, j)成分がcaijなる行列として定義する。すなわち

である。
 最後に行列の積を定義するが、簡単のためmとnとが等しい場合、すなわちn次正方行列に限定する。AとBとの積ABの(i, j)成分を

とする。すなわち

である。たとえばnが2のときを例にとると、

となる(図A)。
 A、B、Cをn次正方行列とすると

が成り立つ。なお一般には積に関しては可換法則AB=BAは成り立たないことは注意を要する。ただEを単位行列

とすると、AE=EA=Aが任意のn次正方行列Aに対して成り立つ。
 以上を総合して、代数学の用語を使うならば、n次正方行列の全体は、単位元を有する非可換な環をなすことがわかる。
 なお、m≠nの場合でも、Aがm×n型行列、Bがn×l型行列の場合、積ABが定義される。その方法は正方行列の場合に準ずる。[足立恒雄]

連立一次方程式

行列の例として連立一次方程式を考える。次の連立一次方程式

は、また

と置くとき
  Ax=b  〔2〕
と表せる。このように行列を用いると、連立一次方程式の表示がきわめて簡単になる。
 さて、ある正方行列Bが存在してBA=Eが成り立つものとすると(Eは単位行列)、〔2〕の両辺に左からBを掛けることによって
  x=Bb
と解xが求められることになる。このようなBのことをAの逆行列といい、A-1と表す。逆行列はあるとしてもただ一つで、このときAA-1=A-1A=Eが成り立つ。逆行列の存在する正方行列を正則であるという。行列Aが正則である条件は、Aの行列式|A|がゼロでないことである。以上により、Aが正則なときは〔2〕、したがって〔1〕はただ1組の解をもち、それはA-1bと表される。[足立恒雄]

掃き出し法

ここでは数値的に連立方程式を解く方法を述べる(図B)。例として

をとる。未知数と等号を略して図Bのように記す。方程式の順序を入れ換えても解は変わらないから、図Bの行列の行を入れ換えてもよい。また一つの方程式に一定の数を掛けて他の方程式に加えても解は変わらないから、一つの行を何倍かして他の行に加えてもよい。また一つの行にゼロでない数を掛けてもよいことが同様にわかる。列に関しては、最後の列以外の2列を入れ換えてもよいこと以外は許されない。これらの操作を繰り返して単純な形へと変形した過程が図Bである。結果としてx=-1, y=0, z=2という解を得る。以上の解法が掃き出し法である。興味深いのは、行に関する三つの基本変形(行の入れ換え、一つの数を掛けて他の行に加える、ゼロでない数を一つの行に掛ける)が、特殊な正則行列を左から掛けることで表現できることである。図Cで2×2行列の場合を例示してあるが、一般でも同様である。[足立恒雄]

行列の階数

Aをm×n型行列とする。いま、行基本変形とともに列基本変形も許すとする。列基本変形は、行基本変形の行列をAに右から掛けることによって得られる。Aに行と列の基本変形を何回か行って、主対角線上に1が、他は0がくるようにする。最後に残った1の数をAの階数(ランク)という。Aがn次正方行列のとき、Aが正則である条件は、Aの階数がnとなることである。[足立恒雄]

逆行列の求め方

n次正方行列Aが正則のときは、前項で記したように階数はnである。したがって施した行基本変形を掛け合わせてB、列基本変形を掛け合わせてCとするとBAC=Eとなる。両辺に左からC、右からC-1を掛けると
  C(BAC)C-1=CEC-1=CC-1=E
ゆえに(CB)A=Eを得る。CBは行基本変形を何回か行う行列であるから、結局、行基本変形だけでAをEに変えることができる。またこのCBが逆行列である。いまXA=EとすればXE=Xだから、AをEに変える行変形をEに施せば、逆行列Xが得られることになる。これが図Dの逆行列を求める原理である。[足立恒雄]

行列と線形写像

V、Wをベクトル空間、TをVからWへの線形写像とする。すなわち、Vの任意の二つのベクトルx、yとスカラー(数)λに対して
  T(x+y)=T(x)+T(y),
  T(λx)=λT(x)
が満たされるとする。Tが上への一対一写像であるとき、Tは同形写像であるといわれる。同形写像が存在するとき、VとWは同形であるといわれる。また、V=Wのときは線形写像は線形変換といわれる。
 n項縦ベクトルの全体Rnは代表的なベクトル空間である。いま、VがRnで、WがRmである場合を考える。Aを一つのm×n型行列とする。Vの縦ベクトルxに対して
  Tx=Ax  〔3〕
でもって写像T : V―→Wを定義すれば、Tは線形写像である。ところが逆にTをVからWへの線形写像とすれば、〔3〕を満たすような行列Aがとれる。すなわち、縦ベクトルのなすベクトル空間の間の線形写像とは行列のことである。AをTに対応する行列という。RmとRnとはm=nのときに限り同形である。また正方行列Aが同形写像を与える条件は、Aの行列式|A|が0でないことである。このことは連立一次方程式〔2〕の解の存在の条件からもわかる。有限次元のベクトル空間は同一次元の縦ベクトルの空間に同形であるので、有限次元のベクトル空間の間の線形写像は、縦ベクトルのなす空間に移してみれば行列で表現される。これにより有限次元のベクトル空間の理論は行列の理論そのものであることになる。これが行列の概念を重要なものとする最大の理由である。[足立恒雄]

一般の連立一次方程式

未知数の数と方程式の数とが一致するとは限らない場合を考える。

という連立一次方程式は、Aを係数のなすm×n型行列、xを未知数のなすn項縦ベクトル、bをb1、……、bmのなすm項縦ベクトルとすると
  Ax=b  〔4〕
と表せる。でもってAの右にbを並べたm×(n+1)型行列を表すことにする。
 に行基本変形とn+1列目以外の列の入れ換えとを行って得られる標準形が

であるとする(こういう形にかならず変形できる)。rはAの階数である。この行列を入れ換えた列の変数を付け換えて連立一次方程式に直してみると

となる。したがって〔4〕が解をもつ条件は
  dr+1=……=dm=0
すなわち、Aの階数との階数が一致することである。そしてこの条件が満たされるとき、上の方程式の解は、ベクトルで表すと
  x=λ1c1+……+λn-rcn-r+d
    (λ1,……,λn-rは任意の数)
の形である。b1、……、bnがすべて0の場合、自明でない解、すなわちx1、……、xnがすべては0ではない解を有する条件はn>rである。とくにn>mつまり未知数の数が方程式の数より大きいならば(m≧rだから)つねに自明でない解を有することになる。[足立恒雄]
『田島一郎著『新しい数学へのアプローチ4 線形代数』(1970・共立出版)』

出典|小学館 日本大百科全書(ニッポニカ) この辞書の凡例を見る
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典内の行列の言及

【行列式】より

…英語ではdeterminantといい,これは決定因子という意味の言葉であり,一次連立方程式の解を決めるのに重要なものということで名付けられたという。明治の日本では当初デテルミナントといったが,後にdeterminantの訳を行列式,matrixの訳を行列とするのが定着した。
[定義]
 行列式は正方行列に対して定義され,|A|,det Aなどの記号が用いられる。…

【金属組織】より

…したがって亜共析鋼の標準組織は初析フェライトとパーライトの二つの要素を含んでいるとみなしてもよい。 合金の体積の大部分を占める組織構成要素をマトリックスmatrixといい,マトリックスを構成している相をマトリックス相という。マトリックスの中に分散している組織構成要素は介在物あるいは分散物と呼ばれ,これを構成している相を分散相あるいは第2相と呼んでいる。…

【紙型】より

…一つの活版組版と同じもの(鉛版)を多数作るとき用いる紙製の雌型。通常,紙型用紙といわれる材料を組版の上にのせて圧力を加えて作る。湿式紙型(ウェットマットwet mat)と乾式紙型(ドライマットdry mat)とがあり,前者は乾燥しないように保存された紙型用紙を活版組版の上にのせ剛毛の打ち刷毛(はけ)でたたいて作るので〈たたき〉とも呼ばれる。現在,乾式紙型が多用される。乾式紙型は数十層を抄き合わせた特殊なドライマット原紙という厚紙をあらかじめ湿して軟らかくし,プレスで活版組版に押しつけて成形する。…

※「行列」について言及している用語解説の一部を掲載しています。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

行列の関連キーワード超越関数長方形角括弧束ねる方鏡丸括弧鉤括弧隅付き括弧波括弧立方形の

今日のキーワード

トランスアジア航空

台湾・台北市に本拠を置く航空会社。中国語名は復興航空。1951年、台湾初の民間航空会社として設立。83年に台湾の国産実業グループに経営移管され、組織改編を実施した。92年に国際チャーター便の運航を始め...

続きを読む

コトバンク for iPhone

行列の関連情報