コトバンクはYahoo!辞書と技術提携しています。

ホモトピー homotopy

2件 の用語解説(ホモトピーの意味・用語解説を検索)

世界大百科事典 第2版の解説

ホモトピー【homotopy】

位相空間Xから位相空間Yへの二つの連続写像f,f′:XYに対し,Xと閉区間[0,1]の直積X×[0,1]からYへの連続写像FX×[0,1]→Yであって,Xのどの点xについてもF(x,0)=f(x),F(x,1)=f′(x)となるものがとれるとき,ff′は同じホモトピー類に属する,またはff′はホモトープであるという(図)。ftXY(0≦t≦1)をft(x)=F(x,t)で定義すれば,各ftは連続写像で,{ft}はtに関して連続的に変わる。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

日本大百科全書(ニッポニカ)の解説

ホモトピー
ほもとぴー
homotopy

ホモトピーは、ホモロジー理論と並んで、組合せおよび代数的トポロジーにおける基本的な概念である。
 20世紀初頭にトポロジーの創始者であるポアンカレは、ホモロジー群とともに位相空間の基本群を定めたが、これを一般化したものがホモトピーである。
 X、Yが位相空間でx0、y0がそれぞれそれらの一点とする。点x0をy0へ写す(連続)写像fとgがホモトピックであるとは、Xと単位区間との直積空間からYへの連続写像
  F:X×[0,1]→Y
が存在して
  F(x,0)=f(x), F(x,1)=g(x),
  F(x0,t)=y0 0≦t≦1
となることである。ホモトピックの関係で写像を分類した同値類をホモトピー類という。とくにXとしてn次元球面をとるとき、このホモトピー類は群をなし、位相空間Xのn次元ホモトピー群πn(X)とよばれる。n≧2のときこれはアーベル群となり、n=1のときπ1(X)が基本群である。基本群が単位元のみである空間は単連結であるという。n(≧2)次元球面は単連結であるが、円周はπ1(S1)=Z(整数の群)であるので単連結ではない。さらにXもYもn次元球面のとき、すなわちn次元球面のn次元ホモトピー群は、直観的にXがYの上に何回巻き付いているかというようすを示す整数である写像度で与えられる。すなわち
  πn(Sn)=Z (整数の加法群)
となる。[野口 廣]

出典|小学館 日本大百科全書(ニッポニカ) この辞書の凡例を見る
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

ホモトピーの関連キーワード位相幾何学位相空間カノニカル分布集積点位相数学ベクトル空間位相差ウィグナーの位相空間分布関数エルゴードの定理可算公理

今日のキーワード

大寒

二十四節気の一つ。元来,太陰太陽暦の 12月中 (12月後半) のことで,太陽の黄経が 300°に達した日 (太陽暦の1月 20日か 21日) から立春 (2月4日か5日) の前日までの約 15日間で...

続きを読む

コトバンク for iPhone