日本大百科全書(ニッポニカ) 「建築材料」の意味・わかりやすい解説
建築材料
けんちくざいりょう
building materials
建築に使用される材料の総称。広義には建築物をつくる際の仮設材料をも含む。
用途・機能によって、構造材料、下地材料、仕上げ材料、断熱材料、音響材料、採光材料、防火材料、接着・接合材料、設備材料、仮設材料などに分類され、使用される部位によって、屋根材料、外壁材料、内壁材料、天井材料、床材料、開口部材料などに分類される。
[笠井芳夫]
変遷
建築とそれを構成する材料とは不可分の関係にある。人類の生活文化や生産技術の発展に伴って建築様式が変化し、これに伴い建築材料も変わり、また新材料の発明が新構造を誕生させる原動力となってきた。
[笠井芳夫]
木造の発展とその材料
木造の建物は森林の豊富な地方において主流をなした。初めは丸太の掘立て小屋式であったが、道具の発達とともに製材されたものを使うようになった。石造・れんが造建築でも架構材や小屋組として木材を使ったものが多い。木造トラス(三角形の組合せによる骨組)は大屋根や大スパン(梁(はり)の支点間の距離)構造物を可能にした。また接着剤で小割材や小幅板を接着した集成材も用いられる。北アメリカを中心に2インチ×4インチ(ツーバイフォー)構造が普及しているが、日本でもプレハブ(工場生産)住宅に多く用いられている。
[笠井芳夫・西岡思郎]
組積造の発展とその材料
切藁(きりわら)やアシなどを泥と混ぜ合わせてつくった日干しれんがは、降雨の少ない乾燥した地方では古くから使われ、古代エジプトの遺跡(紀元前4000年以前)や、メソポタミア、エジプトなどにおいても神殿など大規模な構造物がつくられた。泥に草の繊維を混ぜて塗り付けて壁をつくる方法も古代からあった。現在でも中央アジアではこれに近いものがある。
古代エジプトにおいては紀元前4000年以前から銅または硬く鍛えた青銅製の道具があり、これを用いて石造の宮殿、神殿、墳墓、記念物がつくられた。ジョセル王のピラミッド(前2650年ごろ)はもっとも古い巨石構造物とされている。石造建築においては、表面仕上げや装飾用の大理石などを除けば、構造用石材は古来、建設現場近くに産出する材料を使用するのが原則であった。古代エジプトやギリシアの大建築物は大きな石の梁(はり)を用いた楣(まぐさ)式構造によっている。これらの構造は、様式は変わっても、大柱列建築物としてローマ時代から中世ヨーロッパの建築に用いられ、近代においても外装意匠として用いられている。
焼成れんがの多量生産は、低木、アシなどの燃料が多量に得られる地方において可能であった。紀元前3000年ごろにはすでにメソポタミアではれんがを焼いていたという。古代ローマの遺跡(前6世紀)をみると、れんが造の大神殿が造営されていたことがわかる。れんが造は迫持(せりもち)式(アーチ式)の架構を可能とし、大ドームが構成できるようになった。以来、中世から近世にかけてヨーロッパはもちろん中近東からインドにおいて、この構造による教会、宮殿などの大建築物がつくられた。
[笠井芳夫]
鉄骨構造とその材料
18世紀後半に鉄の生産が急激に増えると、錬鉄や鋳鉄を用いたスパンの大きい屋根や梁がフランス、イギリスなどを中心に架けられるようになった。1840年代にはヨーロッパでは8階建ての鉄骨造の精糖工場が建設されている。以後ロンドン万国博覧会(1851)、次のパリ万国博覧会(1855)を契機として鉄骨建築は一気にヨーロッパからアメリカへと普及した。鉄の量産化と時を同じくして、構造材料ではないが、大形ガラスが生産されるようになった。その象徴的な建物として、ロンドン万国博覧会におけるガラスと鉄だけで構成した水晶宮(クリスタル・パレス。幅124メートル、長さ563メートル)があげられる。今日では超高層建築はH形鋼を用い、耐火被覆を施工したものとなっている。
[笠井芳夫]
鉄筋コンクリートとその材料
19世紀末から20世紀初頭にかけて鉄筋コンクリートの開発がドイツを中心に行われ、アメリカ、日本において大発展を遂げた。鉄筋コンクリート構造は、引張り力を鉄筋に負担させ、圧縮力をコンクリートに負担させるもので、鉄筋はコンクリートのアルカリ性によって保護されて錆(さ)びず、かつ火災の際も鉄筋はコンクリートによって被覆されているので安全である。現場で自由な寸法のものがつくれ、安価であるので、耐震・耐火建築の主流をなしている。
[笠井芳夫]
日本における近代建築構造の変遷とその材料
幕末から明治初年にかけて、れんが造建築が導入された。1872年(明治5)東京の銀座から築地(つきじ)にかけて大火があり、そのあと銀座れんが街の建設が始まっている。本格的なれんがの生産は1887年からである。れんが造の建物は1891年の濃尾大地震で大被害を生じ、さらに関東大震災(1923)で倒壊するものが多数あり、以後完全に衰退した。
鋳鉄円柱は1867年(慶応3)にすでに輸入されている。国産の鋳鉄柱は1882年(明治15)東京鉄道局が鋳造して使用した。本格的な鉄骨造は1900年(明治33)ごろから始まり、関東大震災までに、アメリカの建設会社の請負で輸入鉄骨による帳壁(ちょうへき)式7、8階の貸ビルが相当数つくられた。これらのほとんどが大震災でれんが壁が破壊したり、被覆材が崩れ落ち、火災によって鉄骨が曲がったりして大被害を受けた。以後、鉄骨造は工場、体育館など大スパンの平屋を中心に普及したが、鉄骨高層ビルは、第二次世界大戦後の東京オリンピックを契機とする超高層ホテルや貸ビル建設のラッシュを迎えるまでまったく建設されなかった。鉄筋コンクリート構造では建設が不可能な超高層ビルにおいてはいずれも大形H形鋼を用い、岩綿(ロックウール)などの人工繊維で耐火被覆している。
鉄筋コンクリート造の建物は関東大震災までに相当数つくられたが、震災による被害が少なく、耐震・耐火性が実証され、以後都市の不燃化の要請と相まって、日本の5、6階までの建築の主流をなした。第二次世界大戦後は公営や民営の壁式集合住宅(柱、梁を使わないで壁で耐震性能をもたせる構造にし、少しでも室内空間を広く利用できるようにした住宅)が多くつくられている。
鉄骨の骨組をさらに鉄筋コンクリートで固めて耐震・耐火性を確保する鉄骨鉄筋コンクリート構造は日本独特のもので、関東大震災後急速に普及した。6~9階のビルはこの構造によるものが多いが、9階以上15、16階以下の高層ビルでは、かならずこの構造が用いられている。また防災拠点として用いられる高層住宅なども鉄骨鉄筋コンクリート造でつくられている。
[笠井芳夫・西岡思郎]
建築材料学
建築材料はきわめて多様であるため、これを学問として系統づけにくいが、大きく次の五つに分類される。
(1)基本建築材料学 木材、石材、鋼材、コンクリートなど基本建築材料について、それぞれ物理的・化学的性質、特徴、用途について系統づける学問。
(2)用途・性能別材料学 構造材料、仕上げ材料、断熱材料などの用途、性能を主題として系統づける学問。
(3)部位別材料学 屋根材料、外壁材料、内壁材料、天井材料、床材料、開口部材料など建築の部位を主題として系統づける学問。
(4)材料設計法 材料の性質、性能、施工性、耐久性、経済性などを要求条件に対応させながら材料の選定設計を組織的に行う学問。
(5)材料科学 材料の性質、性能はその組成(成分)、構造(原子の配列、結晶状態など)、組織(密実な組織、空隙(くうげき)組織、繊維組織、複合組織など)によって決まるという立場から材料を系統づける学問。
[笠井芳夫]
『ノーマン・デビィー著、山田幸一訳『建築材料の歴史』(1969・工業調査会)』▽『日本建築学会編『近代日本建築学発達史』(1972・丸善)』▽『河上嘉人・原田志津男・高巣幸二・本田悟・島添洋治他著『シリーズ「建築工学」6 建築材料』(2009・朝倉書店)』▽『橘高義典・杉山央著『建築材料』第4版(2010・市ヶ谷出版社)』