量子もつれ(量子エンタングルメントquantum entanglement)と古典的情報伝達を併用することにより、離れた場所に量子状態を転送する手法。量子もつれの関係にある二つの量子は、一方の状態を観測すると、もう一方の状態が瞬時に確定することからテレポーテーションとよぶもので、量子が瞬間移動するということではない。量子もつれの関係にある二つの量子はEPRパラドックスにちなみ、EPR相関をもつEPRペアとよぶ。そのようなEPRペアである光子対を作成し、伝えたい情報を付加し、他の場所に伝送後、伝送前の光子対を観測した結果を伝送先に古典的情報手段で伝える。その情報を使い、伝送後の光子対を復元すると、伝えたい情報が再現される。伝送路の途中で、盗聴のような操作が入ると、量子もつれの状態が変化して、伝送後には状態変化が明示されるので、盗聴の有無を判別できる。このことは量子暗号に使われる。また、盗聴以外でも伝送時に何かの誤差が入り込んだ場合にも状態変化がわかるので、計算の結果が正しく伝送されたことを証明するエラー補正として量子コンピュータにも使用が検討されている。
1997年にオーストリアの量子物理学者、アントン・ツァイリンガーAnton Zeilinger(1945― )らが条件付きでの量子テレポーテーションの実験に成功、さらに1998年(平成10)以降、物理学者の古澤明(1961― )らが無条件での量子テレポーテーションの実験に成功した。2004年(平成16)には3者間、2009年には9者間の量子テレポーテーションに成功し、量子もつれを使う情報通信ネットワークを構築しつつある。
2013年8月、古澤明を中心とするグループが、完全な量子テレポーテーションに成功した。2017年7月、国立研究開発法人情報通信研究機構(NICT)が、超小型衛星と情報通信研究機構の地上基地局との高度600キロメートルの量子通信に世界で初めて成功した。また、同じ2017年7月、中国の研究チームが、地上・宇宙(墨子号)間の量子通信に成功。2020年には、アメリカ・エネルギー省のフェルミ国立加速器研究所(FNAL)をはじめとする研究チームが、全長44キロメートルの光ファイバーを用いて、光子量子ビットの持続的な長距離テレポーテーションを実証し、90%超という高い忠実度を実現した。さらに2021年(令和3)、理化学研究所創発物性科学研究センター、シドニー大学、ルール大学ボーフムの共同研究チームは、三つの電子スピン量子ビットを用いて、量子テレポーテーションにより、入力ビットの状態を出力ビットへ転写することに成功した。
[山本将史 2022年7月21日]
(2013-8-20)
(尾関章 朝日新聞記者 / 2007年)
出典 (株)朝日新聞出版発行「知恵蔵」知恵蔵について 情報
東海沖から九州沖の海底に延びる溝状の地形(トラフ)沿いで、巨大地震発生の可能性が相対的に高まった場合に気象庁が発表する。2019年に運用が始まった。想定震源域でマグニチュード(M)6・8以上の地震が...
12/17 日本大百科全書(ニッポニカ)を更新
11/21 日本大百科全書(ニッポニカ)を更新
10/29 小学館の図鑑NEO[新版]動物を追加
10/22 デジタル大辞泉を更新
10/22 デジタル大辞泉プラスを更新