二項の代数和のn乗(nは正整数)の展開公式を二項定理という。式で書けば、
となる。各係数
を二項係数といい、これをまた記号で表すこともある。このnCkの数値はn個の異なるものからk個のものを選び出す仕方(選出の順序は考えない)の総数である(組合せの数)。二項定理は組合せ理論と関係し、二項係数についての性質はパスカルによって明らかにされた。そのなかの有名なものにパスカルの三角形がある。これは二項係数間の関係
nCk-1+nCk=n+1Ck (1≦k≦n)
を三角形状に数を並べて示したものである。
二項定理における正整数のべき指数nを一般の実数αで置き換えた展開公式を一般二項定理という。この場合、展開項の個数は無限となる。たとえば、
となる。右辺をxの二項級数という。この級数が和をもつ(収束する)ためのxのとりうる値の範囲(収束域)は-1≦x≦1である。
一般に(1+x)αを二項級数に展開したとき、その収束域はα>0ならば-1≦x≦1となり、また、-1<α<0ならば-1<x≦1となる。α=0またはαが自然数ならばxはどんな数でも収束する。一般二項級数はI・ニュートンによって研究された。
[竹内芳男]
出典 株式会社平凡社「改訂新版 世界大百科事典」改訂新版 世界大百科事典について 情報
出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報
出典 株式会社平凡社百科事典マイペディアについて 情報
…ただし,による和は,nを負でない整数p1,……,pnの和n=p1+p2+……+pkに分解するすべての場合にわたるものとする。k=2のとき二項定理という。多項定理の応用例を二つあげる。…
※「二項定理」について言及している用語解説の一部を掲載しています。
出典|株式会社平凡社「世界大百科事典(旧版)」
[1973~ ]プロ野球選手。愛知の生まれ。本名、鈴木一朗。平成3年(1991)オリックスに入団。平成6年(1994)、当時のプロ野球新記録となる1シーズン210安打を放ち首位打者となる。平成13年(...
12/17 日本大百科全書(ニッポニカ)を更新
11/21 日本大百科全書(ニッポニカ)を更新
10/29 小学館の図鑑NEO[新版]動物を追加
10/22 デジタル大辞泉を更新
10/22 デジタル大辞泉プラスを更新