級数(読み)きゅうすう

デジタル大辞泉の解説

きゅう‐すう〔キフ‐〕【級数】

数学で、数列の各項を順に加法記号(+)で結んだもの。例えば、数列[an]で、a1a2a3+…+an+…をいう。項が有限個であれば有限級数、無限個であれば無限級数という。
写真植字の文字の大きさをで表す数。最小7級から最大100級まで24種あり、1級は4分の1ミリ、13級がほぼ9ポイントにあたる。

出典 小学館デジタル大辞泉について 情報 | 凡例

百科事典マイペディアの解説

級数【きゅうすう】

一定の規則に従って並んだ数または関数(数列または関数列)の各を和の記号で結んだもの。一般の形はa1+a2+…+a(/n)+…。項の数が有限なら有限級数,無限なら無限級数という(収束発散)。等差級数等比級数べき級数フーリエ級数等種々ある。
→関連項目調和級数

出典 株式会社平凡社百科事典マイペディアについて 情報

世界大百科事典 第2版の解説

きゅうすう【級数 series】

ある規則に従って順次に並べられた数または関数の列を,それぞれ数列または関数列といい,それらの列を順次に加法記号で結合した式を級数という。例えば{1,3,5,7,……},{1,2,4,8,……}は数列であり,これらに対応する級数は,それぞれ1+3+5+7+……,1+2+4+8+……である。数列,関数列または級数を構成する各要素を,その数列,関数列または級数の項という。上の第1の例のように各項とその次の項との差が一定である級数を等差級数arithmetic seriesまたは算術級数といい,第2の例のように各項とその次の項との比が一定である級数を等比級数geometric seriesまたは幾何級数という。

出典 株式会社平凡社世界大百科事典 第2版について 情報

大辞林 第三版の解説

きゅうすう【級数】

〘数〙 〔series〕 数列の項を和の記号で結んだもの。数列の個数により有限級数と無限級数に分ける。なお、以前は数列の意味にも用いた。
写真植字文字の大きさを級
を用いて表すときの数字。級。

出典 三省堂大辞林 第三版について 情報

ブリタニカ国際大百科事典 小項目事典の解説

級数
きゅうすう
series

数列 a1a2,…,an,… の項を順に和の記号 + で結んで得られる式 a1a2+…+an+… をいう。 a1a2,…,an,… を級数の項,an をその第 n 項という。項の数が無限個あるときは無限級数といい,有限個の場合は有限級数と呼ぶ。無限級数は直和記号 Σ を用いて次のように表わす。
有限級数は, で表わす。有限級数において, とするとき,この An を級数の和という。無限級数 に対しては A1a1AnAn-1ana1a2+…+an-1an(n≧2) によって定義される An を第 n 項までの部分和という。数列 {An} は極限値をもつこともあり,もたないこともあるが,もし {An} が収束して, が存在すれば,この A を級数の和と呼ぶ。ただし,A は有限でも無限でもよい。この和が有限のとき,無限級数 は収束するといい,収束しない場合を発散するという。

出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報

日本大百科全書(ニッポニカ)の解説

級数
きゅうすう
series

数列a1, a2,……, an,……があるとき、これをプラスで結んだa1+a2+……を級数という。これを記号で

と表す。これは、数列a1, a2,……を順に足していくとどうなるか、ということが問題とされるということである。いま、
  sn=a1+a2+……+an
として、これを級数a1+a2+……の部分和という。この部分和のつくる数列s1, s2,……がある値sに収束するとき、級数a1+a2+……は収束して、その和はsであるといい、これを

で表す。そうでないときは、級数は発散するという。とくにsnが正の無限大に発散するとき、級数は正の無限大に発散するという。級数の各項が正の数(非負の数)であるとき、この級数を正項級数という。また、級数の各項の絶対値をとってつくった級数が収束するとき、この級数は絶対収束であるという。ディリクレおよびリーマンは、級数が収束ではあるが絶対収束ではないときは、項の順序を適当に変更すれば、任意の値に収束させたり、あるいは発散させたりできることを示した。
 級数についての次の二つの性質は、解析学のバックボーンとなる重要な定理である。
〔1〕正項級数は、収束するか、または正の無限大に発散する。そしてその状態、あるいは収束したときの和は、級数の項の順序を入れ替えたり、あるいは項をくくり直したりしても影響がない。
〔2〕絶対収束級数は収束する。そして、その和は、級数の順序を入れ替えたり、あるいは項をくくり直したりしても影響がない。
 いろいろな級数が古くから考察され、その和を求める方法もいろいろくふうされた。いろいろな値を求めるとき、級数を利用することが多い。しかし、特別な場合を除いて、部分和の表示をつくり、それがどうなっていくかを見定めることは困難である。そこで、級数が収束するか発散するかを判定する方法がいろいろ考案された。次はその一つである。二つの正項級数

があって、その項の間に、an≦bn (n=1, 2,……)という関係が成り立っているとする。このとき、(2)が収束するならば(1)も収束する。また、(1)が発散するならば(2)も発散する。
 級数の項の符号が交互にプラス、マイナスを繰り返すとき、交項級数または交代級数という。交項級数に関する次の定理は、実用的な意味をもっている。

が交項級数で、|a1|≧|a2|≧……、かつ

ならば、この級数は収束する。そして、その和をsとするとき、部分和snについて、
  |sn-s|≦|an+1|
が成り立つ。
 級数の積をつくったりする必要もおこる。

というような計算ができるとよいが、たとえば

がともに収束で、とくにその一方が絶対収束ならば、このことは成り立つ。
 級数が発散するときも、これに適当な方法である値を付与し、これを利用することを考えることがある。たとえば、チェザロの総和法は

とする。アーベルの総和法は、

として、

を求める。これによれば、発散する級数
  1-1+1-1+……
には、どちらの方法によっても、1/2という値が付与される。[竹之内脩]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

今日のキーワード

新華社

中華人民共和国の国営通信社。新華通訊社が正式名称。 1931年延安で創立され,48年北京に移り,現在は政府国務院新聞総署の管轄下にある。特に文化大革命以後は重要度が高まり,党と政府の発表はここを通じて...

続きを読む

コトバンク for iPhone

コトバンク for Android

級数の関連情報