最大・最小(読み)さいだい・さいしょう(英語表記)maxima and minima

ブリタニカ国際大百科事典 小項目事典の解説

最大・最小
さいだい・さいしょう
maxima and minima

幾何学において,最大・最小問題といわれるものがある。これは,ある条件を満たす図形 (線分,面分,立体など) の長さ,面積,または体積の値が,最大あるいは最小になるように,その図形を作図する問題をさしている。しかし,最大・最小は,特に実数値をとる関数についていわれる。このような関数の定義域内で,関数の値が最大あるいは最小となるとき,これらの値を最大値あるいは最小値という。たとえば,3次関数 yx3-6x2+9x+5 は,定義域 [-1,2] においては,x=1 のとき最大となり最大値は9,また x=-1 のとき最小となり最小値は-11である。調和関数については,ある領域内で関数が調和であれば,それが定数でない限り,その領域内の点で,最大値も最小値もとらないという性質がある。これを最大・最小値の原理といっている。

出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報

日本大百科全書(ニッポニカ)の解説

最大・最小
さいだいさいしょう

一定の条件のもとで、ある量を最大あるいは最小にする解を求めること。数学的には、(1)最大・最小が存在するかどうかを吟味すること、(2)それをどうやって求めるか、の二つの問題に分けられる。最大・最小の存在については、次のワイアシュトラースの定理がある。「数空間の中の有界閉集合(一般の空間ではコンパクト集合)における連続関数は、そこでかならず最大値・最小値をとる」。この定理にうまく合致しない最大・最小問題を論ずるのは非常に困難である。最大・最小を与える解を求める方法は、(1)微分法変分法を用いて極大・極小を求め、そのなかで最大・最小を探す。(2)極小列(最小値に近づく列)をつくって、それが収束するかどうかを検討する。この場合には、解の存在も同時に論ずることになる。(3)現在では、コンピュータを利用して実験的に最大・最小をみいだすことも行われている。しかし、この方法では本当にそれが最大値あるいは最小値であるという保証がない。(4)特殊な場合として一次不等式による制約のもとで、一次関数の値を最大・最小にする解を求めるのが線形計画法(リニア・プログラミング)である。その発展として、動的計画法(ダイナミック・プログラミング)がある。これはより一般的な形の不等式の制約下における関数の最大・最小を求める問題として論じられている。
 最大・最小問題では、ある関数の最大を求める問題と、他の関数の最小を求める問題とが組になって生ずることがある。これを双対(そうつい)問題という(双対は「そうたい」とも読む)。[竹之内脩]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

今日のキーワード

未必の故意

犯罪事実の発生を積極的には意図しないが、自分の行為からそのような事実が発生するかもしれないと思いながら、あえて実行する場合の心理状態。→故意[補説]作品名別項。→未必の故意...

続きを読む

コトバンク for iPhone

コトバンク for Android

最大・最小の関連情報