コトバンクはYahoo!辞書と技術提携しています。

グラフ理論 ぐらふりろん

ASCII.jpデジタル用語辞典の解説

グラフ理論

点とそれらを結ぶによって表される対象をグラフといい、このグラフの性質を分析するもの。グラフは道路や電気回路などにも見られ、グラフ理論は適用範囲が広い。

出典 ASCII.jpデジタル用語辞典ASCII.jpデジタル用語辞典について 情報

デジタル大辞泉の解説

グラフ‐りろん【グラフ理論】

いくつかの点(ノード)と、これらを結ぶ線分エッジ)からなる図形の、位相幾何学的性質を解析する数学理論。歴史的には18世紀、レオンハルト=オイラーの「ケーニヒスベルクの橋」という、七つの橋を1回ずつ渡って出発点に戻る道筋を考える問題に始まる。電気回路・交通問題・パズルなどに応用。

出典 小学館デジタル大辞泉について 情報 | 凡例

百科事典マイペディアの解説

グラフ理論【グラフりろん】

一筆書きの絵のように,いくつかの点とそれらを結ぶ線からなる図形がグラフである。線は何本あってもよく,グラフを考えるときは,線のつながり方が重要であって形は問題としない。

出典 株式会社日立ソリューションズ・クリエイト百科事典マイペディアについて 情報

世界大百科事典 第2版の解説

グラフりろん【グラフ理論 theory of graphs】

一筆書きの絵のように,いくつかの点とそれらを結ぶ線からなる図形がグラフである。線は何本あってもよく,曲がっていてもよいし長短もとわないことは電気系統の配線図と同様である。グラフを考えるときは,線のつながり方が重要であって形は問題としないが,線が余分に別な点を通るように変形したり,くぐらせるべきところを交わらせたりすれば別なグラフと考える。このようにグラフに対して許される変形を限定しておいて,それによって不変である性質を研究するのがグラフ理論である。

出典 株式会社日立ソリューションズ・クリエイト世界大百科事典 第2版について 情報

大辞林 第三版の解説

グラフりろん【グラフ理論】

有限個の要素からなる集合上の二項関係を研究する数学の一分野。1736年にオイラーによってその端緒が開かれ、計算機科学の発達とともに重要性が認識された。特に、地図色分けに関する定理(四色定理)は、この分野の重要な結果の一つ。

出典 三省堂大辞林 第三版について 情報

ブリタニカ国際大百科事典 小項目事典の解説

グラフ理論
グラフりろん
graph theory

グラフのもつ位相幾何学的な性質を解析する数学の一分野(→トポロジー)。ここでのグラフとは,折れ線グラフや棒グラフのような量の変化を図示したものではなく,一筆書きのように点と線との結合様式によって得られる図形である。たとえば,会社の組織図,トーナメントの組み合わせなどのように,線のつながり方によって得られる図形の本質を研究対象とする。有名な命題にケーニヒスベルクの橋の問題四色問題がある。スイスの数学者レオンハルトオイラーケーニヒスベルクの橋の問題の解決法を与えるとともに,グラフ理論のもとをつくった。また 1930年代にハンガリーの数学者ポーリャ・ジェルジが現代数学のなかに位置づけた。

出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報

日本大百科全書(ニッポニカ)の解説

グラフ理論
ぐらふりろん

グラフ理論というときのグラフは、棒グラフや折れ線グラフ、また二次関数のグラフのように、量の変化を視覚的に表すときのグラフではない。たとえば鉄道網や道路網の図形を思い浮かべてみよう。そこでは現実の方位や距離などは無視され、かなり省略された図が描かれているのが普通である。それにもかかわらずその図が役にたつのは、必要とされる情報が、駅と駅とが何線で結ばれているかとか、乗り換えは何駅で行えばよいか、というようなことだからである。またたとえば会社の組織図や家系図、トーナメントの組合せ、電気回路の配線図なども同様の事情にある。そこで重要なのは、点で表されるもの(各部所、親や子、対戦相手、抵抗や半導体)の結合関係のみである。グラフ理論は、このような質的関係を表現し、研究する分野であり、応用領域は数学のみにとどまらず非常に広い。歴史的には後に述べるオイラーが出発点である。
 いくつかの点とこれらを結ぶ線分(曲線でもよい)からできる図形をグラフという。このとき点は頂点、線分は辺とよばれる。どの二つの頂点も、一方から出発して他方へと達する辺の列で結べるとき、そのグラフは連結であるという。連結なグラフは直観的には、ひとかたまりの図形をなしている。連結グラフのすべての辺を1回通るような周遊道が存在するかどうかという問題がある。これが18世紀に「ケーニヒスベルクの橋の問題」としてオイラーによって考えられた問題である。すなわち図Aのようなケーニヒスベルク(現ロシア領カリーニングラード)のプレーゲル川に架かっていた七つの橋をすべて1回ずつ回って元の出発点に戻るような散歩道を考えよという問題である。オイラーは、町のA、B、C、Dの部分を頂点で、それらを結ぶ橋をこれらの点を結ぶ辺とみて、図Bのようなグラフを考えた。すると、散歩道をみいだす問題は、このグラフの周遊道をみいだす問題になる。オイラーは、「各頂点から出る辺の数がすべて偶数であるか、二つの頂点では奇数であるが他は偶数であるならば、連結グラフは周遊道をもつ」という定理を証明して、この問題に否と答えたのである。実際、この問題では各頂点から出る辺の数はすべて奇数である。したがってまた、AとBにもう1本の橋が架かっていれば(元の場所へは戻れないが)周遊道があり、さらにCとDにもう1本の橋が架かっていれば元に戻る周遊道が存在する。この定理はグラフの「一筆書きの定理」ともよばれ、逆も成り立つ。
 図Cのような正十二面体の各頂点を世界の都市とみて、各辺をそれらの間を行き来する旅行路としたとき、この旅行路に沿って各都市をちょうど1回通る世界旅行コースをみいだせというのがハミルトンの問題であり、旅行時間や旅費を考慮に入れれば旅行業者がいつも直面する問題でもある。この正十二面体の頂点のつくるグラフは、図Dのような平面上のグラフとなるので、このグラフの各頂点をちょうど1回通る通路を考えればよい。この場合には太線のような道が求める通路になる。同様な問題が任意の連結グラフで考えられるが、この一般の場合の解(一筆書きの定理のような)はまだ得られていない。
 グラフは、それらの辺が頂点以外では互いに交わることのないように平面に描けるとき平面グラフという。図Eのグラフを平面に描くと、かならずどれかの2辺が頂点以外の点で交わってしまうので、これは平面グラフではない。これに関してクラトウスキーによる、「グラフが平面グラフとなるためには、図Fまたはのグラフが部分として含まれないことが必要十分である」という結果がある。
 グラフの一つの頂点から出る辺の個数をその頂点における局所次数という。頂点がA1、A2、…、Anであるグラフの各頂点Aiの局所次数がρ(Ai)であり、辺の数をNとするならば、

となる。このことから、局所次数が奇数であるような点はかならず偶数個あることがわかる。図Gのようなグラフは、閉じた道(ある点から出発して元に戻り、途中では自身と出会うことのない道)のないグラフであり、こうした連結グラフは英語のtreeを訳して木という。木はn個の頂点をもつとn-1個の辺をもつ。よって木の辺の個数をN、頂点の個数をnとすると、r=N-n+1=0となる。しかし一般の連結グラフでは、この数r=N-n+1は0ではなく、このrをそのグラフの回路階数という(図H)。グラフの回路階数は、そのグラフに含まれる回路の数が多くなるほど多くなり、そのグラフの複雑さを示す数である。これは、この図形の一次元ベッチ数とよばれる位相不変量である。
 四色(よんしょく)問題(地図を国で色分けする場合、線で接する国を違う色で塗るとすると、必要な色の最大数は4である、ということの証明問題)も、各国を頂点に境界を接する国に対応する頂点を辺で結ぶと、頂点の彩色問題としてグラフ理論の一部とみられる。[野口 廣]
『O・オア著、野口廣訳『グラフ理論』(1970・河出書房新社)』

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

グラフ理論の関連キーワード組み合わせ数学・組み合せ数学パーカー‐エヴィック方程式巡回セールスマン問題DNAコンピュータソーシャルグラフメンガーの定理計算機科学ツリー構造応用数学有限数学離散数学アッペル重要性端緒

今日のキーワード

いい夫婦の日

11月22日。通商産業省(現経済産業省)が制定。パートナーへの感謝の意を示し、絆を深める。...

続きを読む

コトバンク for iPhone

コトバンク for Android