コトバンクはYahoo!辞書と技術提携しています。

半導体 ハンドウタイ

7件 の用語解説(半導体の意味・用語解説を検索)

ASCII.jpデジタル用語辞典の解説

半導体

電気を通さない絶縁体と電気を通しやすい導電体の、中間的な物質。トランジスター、ICやLSIなどの集積回路、発光ダイオートなどに使われている。これらの部品自体を指すこともある。温度や光、磁気といった物理的な条件で導通率が変わる性質を利用して、不純物の混入で固有抵抗を変化させることで特性を持たせている。原料にはシリコンゲルマニウムなどが使われる。

出典|ASCII.jpデジタル用語辞典
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

デジタル大辞泉の解説

はん‐どうたい〔‐ダウタイ〕【半導体】

電気伝導性が導体と絶縁体との中間である物質。絶対零度では伝導性を示さず、温度の上昇に伴って伝導性が高くなる。ゲルマニウムセレンなどがあるが、不純物を微量加えたn型・p型半導体のほうが実用が多く、ダイオードトランジスタに利用。セミコンダクター。
[補説]商品としての半導体は、工業国にとって重要な産品であることから「産業の米」とも呼ばれる

出典|小学館 この辞書の凡例を見る
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

百科事典マイペディアの解説

半導体【はんどうたい】

英語ではsemiconductor。常温で電気伝導率が導体と絶縁体の中間の値(約10(-/)1(0/)〜103Ω(-/)1・cm(-/)1)をもつ固体の総称。
→関連項目n型半導体キャリアケイ(珪)素自由電子信越化学工業[株]導体特殊陶磁器ドーピング日米半導体協定ニューカーボンハイテク公害発光ダイオード半導体集積回路p型半導体不導体有機塩素化合物有機半導体

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. ご提供する『百科事典マイペディア』は2010年5月に編集・制作したものです

世界大百科事典 第2版の解説

はんどうたい【半導体 semiconductor】

金属のような導体(電気伝導度104~106Ω-1cm-1)とガラスや磁器などのような絶縁体(10-20~10-12Ω-1cm-1程度)に対し,弱いが若干の電気伝導性(例えば10-10~102Ω-1cm-1程度)を示す一群の物質を半導体と総称する。しかし半導体の特徴は,その電気伝導度の大きさよりも,むしろその電気的性質が温度や微量の不純物の存在などによって大きく変化することであり,これがさまざまな応用にもつながっている。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

大辞林 第三版の解説

はんどうたい【半導体】

電気抵抗の値が金属と絶縁体との中間である固体物質の総称。低温では絶縁体に近く,温度が高くなるに従って電気伝導性が増す。ゲルマニウム・セレン・シリコン・ガリウムヒ素などがあり,整流器やトランジスタなどに応用される。

出典|三省堂
(C) Sanseido Co.,Ltd. 編者:松村明 編 発行者:株式会社 三省堂 ※ 書籍版『大辞林第三版』の図表・付録は収録させておりません。 ※ それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

ブリタニカ国際大百科事典 小項目事典の解説

半導体
はんどうたい
semiconductor

絶縁体導体の中間の電気的性質を示す結晶性の物質で,通常は室温での抵抗率が 10-4 ~ 106 Ω・m程度のものをさす。代表的な半導体としてシリコン (→ケイ素 ) ,ゲルマニウムセレンなどの元素半導体ヒ化ガリウムインジウムリンなどの化合物半導体がある。

本文は出典元の記述の一部を掲載しています。

出典|ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)の解説

半導体
はんどうたい
semiconductor

常温で金属と絶縁物の中間の抵抗率(10-3~1010Ω・cm)をもつ物質をいう。この物質は、極低温では絶縁物に近く無限大の抵抗率を示すが、温度上昇とともに急激に抵抗率が下がる。このことは、金属の抵抗率が温度上昇によって増加するのに対しており、半導体の一つの特徴となっている。そのほか、不純物の添加や光照射などの外部要因によっても抵抗率が大きく変化する。代表的な半導体には、単体のシリコン(ケイ素)、ゲルマニウム、セレンなどをはじめ、金属酸化物の酸化亜鉛、酸化鉛、酸化銅など、金属間化合物のガリウムヒ素(ヒ化ガリウム)、ガリウムリン(リン化ガリウム)、インジウムアンチモン、窒化シリコン、炭化シリコンなど、硫化物である硫化カドミウム、テルル化物であるテルル化カドミウム、有機化合物であるアントラセンなどがある。[右高正俊]

歴史

半導体によって生ずる現象の発見は、19世紀の初頭から始まっている。1839年M・ファラデーは、硫化銀の抵抗率が金属とは逆に温度の上昇とともに減少することを発見、同年ベックレルAlexandre Edmond Becquerel(1820―1891)が、ある材料と電解質との界面に光を当てることによって電圧が発生する光起電力効果を発見した。1873年には、スミスWilloughby Smith(1828―1891)が、セレンに光を当てると電気伝導が変化する光導電効果を発見している。その1年後に、K・F・ブラウンは方鉛鉱に金属線を接触させて整流作用があることをみいだし、鉱石検波器の先駆者となった。同年A・シュスターは、酸化銅と銅の接触面でも整流作用があることを発見し、1920年のグロンダールLars Olai Grondahl(1880―1968)による亜酸化銅整流器試作のための基礎づくりを行った。また、1876年にフリツCharles Edgar Fritts(1838―1905)がセレンの整流作用を発見し、1883年には面接触型の実用的なセレン整流器を発表している。このように20世紀初頭までに多くの半導体素子が現れたが、その動作が明確に理解されるには至らなかった。1926年E・シュレーディンガーによって波動方程式が発表され、それを用いて半導体内の現象が次々と明らかになった。時を同じくして、理想に近い半導体材料もつくられるようになり、ついに1947年、J・バーディーン、W・H・ブラッテンが点接触トランジスタ(最初のトランジスタで現在は用いられていない)を発見し、続いて1948年W・B・ショックレーによるpn接合理論が発表され、本格的な半導体の時代となった。[右高正俊]

半導体の物性

半導体の性質は結晶構造や化学結合の状態によって決まる。シリコン、ゲルマニウムなどの単体半導体は周期表の族に属し、ダイヤモンドと同じ構造をもつ結晶をつくる。この結晶構造はダイヤモンド構造とよばれ、正四面体の頂点に各原子が配置される。各原子は、原子のいちばん外側にある4個の電子を1個ずつ出し合って、隣の原子と共有することによって結合している(共有結合という)。族の金属間化合物であるガリウムヒ素、ガリウムリンなどは、族と族の原子が交互に共有結合をして、単体半導体と類似の構造をもつ結晶をつくる。この構造は隣り合う原子が互いに異種原子となり、閃(せん)亜鉛鉱型とよばれる。テルル化カドミウムは閃亜鉛鉱型となるが、硫化カドミウムはウルツ鉱型といわれる構造を示している。そのほか、硫化鉛、テルル化鉛などは岩塩型結晶構造をもつなど多種多様であり、酸化物、硫化物などでは精製が困難で単結晶が得がたいものも多い。
 物質を構成している原子は、陽子と中性子からなる原子核と、その周りにある電子からできている。原子番号Zはこの陽子の数を表し、電子の数もZに等しい。これらの電子の行動は量子力学の法則に従い、シュレーディンガーの波動方程式を満足しなければならない。すなわち、原子核の周りを回っている電子は、決まったエネルギー準位の軌道しか選ぶことができず、しかも、同じエネルギー準位の軌道には、決まった数の電子しか入ることができない。量子状態を表す主量子数nが1のところには2個、2のところに8個、3のところに18個というぐあいである。しかし、原子を互いに近づけて結晶を構成させると、結晶内の一つの原子は、結晶全体に含まれる他の原子の影響を受け、エネルギー準位が変化する。原子群が互いに接近するにつれてエネルギー準位は分裂し、結晶を構成する程度に近づくと、少しずつ違ったエネルギー準位の集合であるエネルギー帯となる。この二つの帯の間は電子の存在が禁止されているので、禁止帯という。禁止帯の上のエネルギー帯に、電子で占められない準位が残っているときには、電子は原子間を移動することができるので、このエネルギー帯を伝導帯といい、禁止帯の下のエネルギー帯を価電子帯という。禁止帯のエネルギー幅は物質によって異なり、伝導帯に電子がなく、禁止帯の幅が大きいときは絶縁物、禁止帯幅が小さい場合には半導体となる。また、伝導帯に十分電子と空準位がある場合や、伝導帯と価電子帯が重なって禁止帯がない場合には金属となる(図A)。
 温度が室温より十分低い場合、禁止帯幅の小さい半導体においても、伝導帯の電子が禁止帯を飛び越えて伝導帯に上がることができず、伝導帯には電子がないので電気伝導はおきない。したがって、半導体は絶縁体となる。しかし室温では、価電子帯電子の一部が伝導帯に上がり、価電子帯に空準位を残す。伝導帯の電子、価電子帯の空準位(これを正孔という)は、ともに電気伝導に寄与するため、半導体は導電性を示すようになる。温度が高いほど伝導帯に上がる電子の数が増すため、半導体の導電性はよくなる。半導体の種類が決まれば、このような電子や正孔の数はフェルミ分布関数から求めることができる。なお、半導体内において、電気伝導に寄与する電子と正孔をキャリアあるいは電荷担体という。[右高正俊]
n形・p形
以上のような半導体の性質は、単体半導体の場合では不純物がない場合であり、また化合物半導体では、化学量論的組成からのずれや欠陥のない理想に近い半導体(固有半導体という)についてのものである。単体半導体や一部の化合物半導体では、特定の不純物を加えることにより、伝導帯、または価電子帯近くの禁止帯中に新しい準位をつくることができる。伝導帯近くの準位をドナー準位といい、ドナー準位の電子は、わずかなエネルギーで伝導帯に上がることができるので、電子による導電性が増す。これをn形半導体という。また、価電子帯近くの準位をアクセプタ準位といい、価電子帯の電子はアクセプタ準位に上がり、価電子帯に正孔を生じ、この正孔によって導電性が増す。これをp形半導体という。さらにイオン性の強い化合物半導体では、金属イオンの過不足や欠陥による新しい準位ができ、金属イオンが過剰の場合はn形半導体、金属イオンが不足の場合はp形半導体となる(図B)。[右高正俊]
pn接合
同一の半導体単結晶中にn形とp形の領域を接してつくった場合の両領域の接したところをpn接合という。pn接合は、ダイオード、トランジスタ、集積回路などで重要な働きをする基本構造である。pn接合は同一単結晶中にあるため、外観はとくに変わりはないが、接合付近のエネルギー帯構造は熱平衡状態で内部電界が発生する。p形領域では、正孔密度がn形領域より高いので、正孔が一部拡散で移動して正孔のほとんど存在しないp形領域(空乏層という)ができる。同様にn形領域の一部にも電子のほとんど存在しない空乏層ができ、ここに内部電界ができる。内部電界は正孔、電子の拡散を妨げる作用をして平衡状態となっている。p形領域が負電位となる向きに外部電圧を加えると、内部電界はさらに強くなるので、拡散は抑えられて電流は流れないが、これと逆の電圧を加えると、内部電界は小さくなり拡散電流が流れる。これがpn接合の整流作用である(図C)。
 同一の結晶中にpnpまたはnpnと三つの領域を接してつくったものをバイポーラトランジスタという。バイポーラトランジスタでは、入力側のpn接合は内部電界が小さくなる向きに、出力側は内部電界が大きくなる向きに電圧を加えると、入力側の小さな電圧で注入された電子が、大きな電圧をかけた出力側に流れて電力の増幅ができる(図D)。[右高正俊]

半導体結晶の製造方法

集積回路や一般のトランジスタ、ダイオードには、良質で大型の単結晶がつくりやすい引上げ法(チョクラルスキー法あるいはCZ法ともいう)によりつくった単結晶が用いられる。一方、電力用トランジスタ、整流器、サイリスタなどの高耐圧を必要とする素子には、高純度、高比抵抗の単結晶がつくりやすい浮遊帯溶融法(フローティングゾーン法あるいはFZ法ともいう)による単結晶が用いられる。引上げ法はゲルマニウム単結晶の量産にも用いられている。引上げ法でシリコン単結晶をつくる場合は、高純度石英るつぼの中に入れた高純度シリコン多結晶を、るつぼホルダー外周に設けたカーボンヒーターにより加熱して溶かし、この溶液に単結晶を接触させ、これを毎分10回程度回転しながら毎分1~2ミリメートルの割合で引き上げる。石英るつぼも単結晶と逆方向に回転させることで、均質で大直径の単結晶がつくられる。直径は、初期の20ミリメートルから現在の300ミリメートルと、平均年6~7ミリメートルの割合で大きくなっている。
 浮遊帯溶融法は、ゲルマニウム多結晶などの物理精製を行っていた帯精製技術を発展させたもので、シリコンに応用しているが、溶液に接しているるつぼがないため、不純物の混入がなく高純度の単結晶が得られる。この方法は、装置の中で初めに浮遊溶融帯を多結晶と単結晶との中間につくる。浮遊溶融帯は高周波(周波数2~3メガヘルツ)の一巻きコイルを用い、結晶を部分的に溶かしてつくり、多結晶と単結晶とを互いに逆方向に回転させながら下方に移動することで、浮遊帯下の単結晶を成長させる。浮遊帯は溶液の付着力と凝集力によって単結晶上に保たれ、力学的に不安定であるが、制御技術の進歩で、引上げ法による単結晶に近い大きさのものができる。
 シリコンやゲルマニウムなどの単体半導体では、融点における蒸気圧はきわめて低いので、結晶成長は真空または高純度アルゴン雰囲気で行うことができる。しかし、化合物半導体で揮発性の高い成分がある場合、揮発を防ぐ手段が必要となる。たとえば、ガリウムリンの場合、融点(1467℃)におけるリンの蒸気圧は35気圧となるので、ガリウムリン結晶を溶液からつくるには、このような高温・高圧の下で成長を行わねばならない。しかし、ガリウム溶液上に酸化ホウ素を浮かべると、結晶成長のときにこれが溶液全体を包み、リンの飛散が防止できる。これを液体カプセル法とよんでいる。
 高揮発性成分の蒸気圧を制御しながら溶液から成長させる方法に、水平ブリッジマン法がある。この方法は、おもにガリウムヒ素の単結晶製造に用いられている。石英アンプルにガリウムヒ素、ガリウムヒ素種結晶、過剰ヒ素を封入し、ガリウムヒ素の融点におけるヒ素圧を過剰ヒ素の温度を調節して供給し、ガリウムヒ素の分解を防ぎながら成長を行う。
 以上の方法でつくられた単結晶は、切断、研摩のうえ薄板として用いられる。この工程で切代(きりしろ)として失われる結晶や、工程に必要な労力を節約し、経済的に薄板状結晶(リボン結晶)をつくる方法が注目されている。この方法には、過冷却溶液表面から樹枝状結晶を引き上げる方法と、薄片状の穴のあいた鋳型の一端を溶液に接触させ、穴を通して帯状結晶を成長させる方法がある。
 薄板状の単結晶基板上に、同一単結晶の薄層を成長させることはエピタキシーといわれ、優れたダイオード、トランジスタや集積回路をつくるには不可欠の技術である。エピタキシーには、液相からのものと気相からのものがある。液相エピタキシーはガリウム、インジウムなどの低融点金属を用い、化合物半導体の薄層を成長させるのに用いられ、発光ダイオードやレーザーダイオードの製法として実用化され広く使われたが、1980年代以降は気相エピタキシーが主となっている。液相エピタキシーでは、金属溶液の中に化合物半導体を溶かして飽和させ、温度を下げて過飽和の溶質を基板上に付着させる。基板上に種類の異なる半導体層を成長させるには、数種の溶液溜(だめ)を移動させ、基板に次々と接触させるようにしたグラファイト(黒鉛)製のスライド式ボードが使われる。
 気相エピタキシーには、化学反応によって反応ガスから半導体を基板上に堆積(たいせき)させるものと、高真空中で蒸発させて基板上に蒸着させるものとがある。前者で、シリコンを成長させる場合は、四塩化ケイ素の水素還元で得られるシリコンを1200℃程度に加熱したシリコン基板上に堆積させ、単結晶を成長させている。この場合、ジボランやホスフィンをわずか混合することで、p形やn形半導体層をつくることができる。化合物半導体の場合には、有機金属を反応ガスとして用いる。後者によるエピタキシーは分子線エピタキシーともいわれ、超真空(10-9トル以下)中で、蒸着分子をビーム状にして(細孔またはスリットを通して)基板に到着させ、薄膜単結晶を成長させる。この方法では、シリコンに限らず種々の半導体薄層を幾層にも重ねてつくることができるが、厚い層をつくるには時間が長くなる欠点もある。[右高正俊]

半導体素子の製法

半導体素子(半導体デバイス)は半導体結晶基板の導電率や導電形(n形とかp形の)を部分的に変え、必要なところに電極付け、配線を行ってつくられる。単結晶製作のときには、単結晶全体の導電率、導電形をできるだけ一様にするよう制御するが、この単結晶をそのまま用いて電極付け、配線してつくる素子は、光伝導セル、ホール素子、ペルチエ素子などと、それほど多くない。単結晶の製造の途中で一部分導電形を変え、pn接合による成長接合トランジスタとすることも行われていたが、接合のある結晶の一部しか使用できず、大部分は捨てるので、量産性に乏しく、現在は使われていない。単結晶を切断した薄板(ウェハーという)を基板として素子をつくるには、部分的にウェハーの導電形を変える方法がとられ、合金法、不純物拡散法、イオン打込み法、エピタキシー法などがある。合金法は、インジウム、アルミニウムなど半導体結晶と低い温度で合金をつくり、しかも導電形を変えうる金属を用いる。ゲルマニウム合金形トランジスタ、シリコンダイオードなどがこの方法でつくられていたが、接合部分の精密制御がむずかしく、しかも、多くの素子を一度につくるいわゆる一括生産性が低いので、現在ではほとんど行われていない。
 不純物拡散法は拡散層の厚さの制御が容易で、酸化ケイ素膜などをマスクとして使い、拡散領域の精密制御もできる。さらに不純物の種類によりp形、n形領域を自由に得られ、広く用いられている。たとえばプレーナートランジスタでは、酸化ケイ素にあけた孔(あな)からホウ素を拡散してベース用p形層をつくり、その上にできた酸化膜に二度目の孔をあけ、リンを拡散してエミッタ用n形層をつくる。さらにベース、エミッタの各層に、酸化膜にあけた孔を通し電極付けを行ってトランジスタとする(図E)。この方法は、ウェハー上に一度に多数のトランジスタを同時につくる一括生産性が高いうえ、リソグラフィーを用いてエミッタやベース領域を精密に制御できるので、優れたトランジスタを安く量産できるようになった。この方法は現在の集積回路を製造するのにも使われている。また、集積回路の基本的技術ともなっている不純物のイオン打込み法は、(1)常温で打ち込むことができる、(2)マスクとして酸化膜、多結晶膜などのほか、感光性樹脂(レジストともいう)膜が使える、(3)不純物の添加量制御が精密に一様にできる、(4)1000℃以下の熱処理で済み、打込み層の厚さをイオンの加速電圧で制御できる、などの多くの利点をもつ。したがって、拡散法と同じように、バイポーラトランジスタのベース、エミッタの形成、MOS(モス)トランジスタのソース、ドレーンの形成に使えるほか、MOSトランジスタの閾値(しきいち)電圧の調整に使われている。エピタキシーは一種の結晶成長であるが、成長速度が引上げ法の1000分の1程度と小さいので、普通数マイクロメートル程度の素子用結晶層の製作に利用される。とくに不純物濃度を基板結晶と独立に設定できるので、たとえばバイポーラ集積回路素子層をつくるときのように、高不純物濃度層上に低不純物濃度層をつくることができて、他の方法と異なった特長をもつ。すなわちバイポーラ集積回路では、p形基板上にn+形(+符号は高不純物濃度)埋込み層が拡散でつくられ、その上に高抵抗のn形層がエピタキシーでつくられ、この中に抵抗、ダイオード、トランジスタがつくり込まれる(図F)。化合物半導体では、液相エピタキシーで良好な結晶層が低温でつくれるため、ガンダイオードの動作層、電極層、レーザーダイオードのヘテロ接合、発光ダイオードのpn接合などの製造に用いられる。しかし、化合物半導体でも1980年代以降は気相エピタキシーでレーザーダイオードなどがつくられるようになっている。[右高正俊]

半導体の応用

代表的な半導体素子であるダイオード、トランジスタは、かつての真空管、放電管などの分野(整流、検波、増幅、発振など)を、小型、軽量、小消費電力、長寿命などの特長を生かしながら侵食し、いまや真空管が使われるのは、高周波・高出力、たとえば大出力放送などのほんの一部だけとなっている。半導体素子は、通常のダイオード、トランジスタのほかに、サイリスタ(シリコン制御整流器)、ツェナーダイオード(定電圧ダイオード)、エサキダイオード(トンネルダイオード)、ガンダイオード、インパットダイオードなどと種類も多い。また、光と関係する発光ダイオード、レーザーダイオードなどがあるが、これらは化合物半導体でつくられ、受光用としてのホトダイオード、ホトトランジスタなどは、シリコンやゲルマニウムなどでつくられる。光発電用として太陽電池が実用化され、光‐電気の変換効率25%程度のものがシリコンで、32%程度のものがガリウムヒ素などでつくられている。以上はpn接合の性質を利用しているが、単結晶の性質を利用したものとして、磁場検出用のホール素子、電子冷却用のペルチエ素子、熱電子発電用のゼーベック素子、光検出用の光伝導セル、ストレンゲージ(抵抗線ひずみ計)用のピエゾ効果素子などがある。酸化物半導体は単結晶にはならないが、ガスセンサー、サーミスターなどのほか、電子管の陰極材料としても用いられる。
 半導体は、抵抗やコンデンサーなどの回路部品をその中につくり込むことができ、しかも同一半導体中の素子や部品を電気的に分離することもできる。この性質を利用し、一つの機能をもった回路を同一半導体基板上につくり付けたものが半導体集積回路(IC)である。集積回路はさらに大規模集積回路(LSI)、超LSI、超超LSIと進み、機能の高い信頼性のある小型・軽量の回路を安くつくることができる。その応用範囲は、従来の真空管やトランジスタの範囲をはるかに超えて、社会のあらゆる分野に及ぶようになっている。[右高正俊]
『伊藤糾次他著『最新半導体素子入門』(1971・誠文堂新光社) ▽電子工学ポケットブック編纂委員会編『電子工学ポケットブック』第3版(1982・オーム社) ▽右高正俊著『新LSI工学入門』(1992・オーム社) ▽内富直隆著『はじめての半導体――しくみと基本がよくわかる』(2009・技術評論社) ▽大豆生田利章著『半導体デバイス入門』(2010・電気書院) ▽西久保靖彦著『図解雑学 最新 半導体のしくみ』(2010・ナツメ社)』

出典|小学館 日本大百科全書(ニッポニカ) この辞書の凡例を見る
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典内の半導体の言及

【固体】より

…異なる原子の組合せで結晶がつくられる場合には,一般にイオン結合と共有結合の性格が共存した結合で結晶がつくられる場合が多々ある。II族とVI族原子からできた硫化カドミウムCdS,III族とV族原子からできたヒ化ガリウムGaAsのような半導体物質がその例にあたる。ところで,ナトリウムとかカリウムの金属物質の場合には,価電子は1個で,しかも同じ元素どうしであるため,4個とか6個の結合の腕をもった対称性の高い共有結合物質や,あるいはまたイオン結合物質をつくることはできない。…

※「半導体」について言及している用語解説の一部を掲載しています。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

半導体の関連キーワード完全導体電気伝導率導体常伝導体電気伝導度伝導度有機導体ヴィーデマン‐フランツの法則ローレンツ数ローレンツの法則

今日のキーワード

朝鮮大学校

東京都小平市にある在日朝鮮人子弟のための学校。1956年設立,1968年各種学校として認可。朝鮮総連系の東京朝鮮学園が経営。大学教育に準ずる民族教育を目的とし,4年制の文学,歴史地理,政治経済,経営,...

続きを読む

コトバンク for iPhone

半導体の関連情報