関数が与えられたとき、1点Pの適当な近傍Vをとると、Vのなかではその関数がPにおいて最大(最小)となっているとき、関数はPにおいて極大(極小)となるといい、そのときの関数値を極大値(極小値)という。極大値、極小値を総称して極値という。
関数が最大あるいは最小になる点が存在するならば、それを関数の全定義域から求めよ、というのは、古来数学における重要な問題であった。しかし、最大・最小という性質が大域的なものであるため、一般的に解を得ることはたいへん困難である。一方、極大・極小という性質は局所的なものであって、極値を与える点は、以下に示すように微分法を用いて探すことができる。これら極値を与える点から最大・最小を与えるものを求める、というのが実用的なやり方である。
[竹之内脩]
関数f(x)がx=x0で微分可能でx=x0で極値をとるならば、f′(x0)=0である。もしf′(x)がx0の左側では正、右側では負であれば、x0はf(x)の極大を与え、左側で負、右側で正ならば極小を与える。またf(x)がx=x0でn回微分可能で、
f′(x0)=0, f″(x0)=0,……,
f(n-1)(x0)=0, f(n)(x0)≠0
のときは、nが偶数ならばx0はf(x)の極値を与える点であり、nが奇数のときはx0はf(x)の極値を与えない。
[竹之内脩]
記述を簡単にするため二変数関数の場合を述べる。f(x, y)がP(x0, y0)で偏微分可能で、fがPで極値をとるならば、fx(x0, y0)=0, fy(x0, y0)=0である(fx、fyはfの偏微分係数)。また、fがPの近傍において2回連続微分可能(fxx、fxy、fyyが存在して連続)で、fx(x0, y0)=0, fy(x0, y0)=0であるとする。
Δ=fxy(x0, y0)2
-fxx(x0, y0)fyy(x0, y0)
なる値の符号によって、Δ<0ならばfはPで極値をとり、Δ>0ならば極値をとらないと判定される。ただしΔ=0であるときは、これだけからはいずれとも判定できない。
∅(x, y)=0という条件のもとでx、yが変化するとき、これらの値をもつ点は一つの曲線を描く。この曲線上での関数f(x, y)の極大・極小を求めるには、一つの定数λを考えて、f(x, y)-λ∅(x, y)という式をつくり、これをx、yに関して偏微分したものをゼロと置いて、すなわち、
fx(x, y)-λ∅x(x, y)=0,
fy(x, y)-λ∅y(x, y)=0
を満たす点(x, y)を極大・極小を与える候補として調べればよい。この方法をラグランジュの未定乗数法という。
[竹之内脩]
出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報
出典 株式会社平凡社「改訂新版 世界大百科事典」改訂新版 世界大百科事典について 情報
…しかし図1で示すようにf(x)=x3-3xについてはf(-1)=2は極大値ではあるが最大値でなく,f(1)=-2は極小値ではあるが最小値でない。極大値と極小値とを総称して極値という。 f(x)が実数のある区間で定義された微分可能な関数であって,cをその区間の内部の1点とする。…
※「極値」について言及している用語解説の一部を掲載しています。
出典|株式会社平凡社「世界大百科事典(旧版)」
東海沖から九州沖の海底に延びる溝状の地形(トラフ)沿いで、巨大地震発生の可能性が相対的に高まった場合に気象庁が発表する。2019年に運用が始まった。想定震源域でマグニチュード(M)6・8以上の地震が...
12/17 日本大百科全書(ニッポニカ)を更新
11/21 日本大百科全書(ニッポニカ)を更新
10/29 小学館の図鑑NEO[新版]動物を追加
10/22 デジタル大辞泉を更新
10/22 デジタル大辞泉プラスを更新