ゼーマン効果(読み)ぜーまんこうか

日本大百科全書(ニッポニカ) 「ゼーマン効果」の意味・わかりやすい解説

ゼーマン効果
ぜーまんこうか

磁場中に置かれた原子分子発光または吸収スペクトル線が、磁場の作用によって分裂する現象。1896年オランダの物理学者P・ゼーマンが発見した。彼は、ナトリウムの黄色線(D線)の幅が磁場中で広がることを観測した。数年後にH・A・ローレンツは古典的電磁気学理論に基づき、スペクトル線の放射は原子内電子の回転によって生ずると考え、磁場によって電子の回転数が変化することを理論的に示し、ゼーマン効果を説明すると同時に、光の放射の原因を解明することに成功した。ゼーマン効果によって分裂したスペクトル線の各成分線は、磁場の方向から観測すると、左または右回り円偏光であり、磁場に垂直な方向から観測すると、磁場の方向に偏りをもつ直線偏光(π(パイ)成分)と、磁場に垂直な方向に偏りをもつ直線偏光(σ(シグマ)成分)とからなっている。後者のほうが磁場のない元のスペクトル線の位置からのずれが大きい。原子の状態が電子のスピン(電子の固有角運動量で、当初は電子の自転のために生じたものと考えられた)に関係しない場合には、磁場に垂直な方向から観測するとき、スペクトル線はσ、π、σの3本に分裂する。これを正常ゼーマン効果による三重線という。電子のスピンが関係している状態では、ゼーマン効果はもっと複雑で、本数も多く、また分裂間隔前述の値ではなくなる。この場合を異常ゼーマン効果という。磁場の強さが非常に強い場合には、異常ゼーマン効果による複雑な分裂線も、大きく分ければ三つの群をなし、間隔は正常ゼーマン効果の値に近い。この現象をパッシェン‐バック効果という。

 原子や分子にみられる磁場によるエネルギー準位の分裂は、液体や固体においても現れ、それによる光学的性質の変化を一般に磁気光学効果という。固体においては、発光スペクトルや吸収スペクトルの線幅は一般に非常に広いので、磁気光学効果もスペクトル線の分裂としては観測できないが、ファラデー効果(物質中を磁界に平行に直線偏光を通したとき、偏光面が回転する現象)や、磁気円偏光二色性(物質を通過する際に生ずる吸収の強さが、右回り円偏光と左回り円偏光とで異なる現象)として観測される。

[尾中龍猛・伊藤雅英]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

ブリタニカ国際大百科事典 小項目事典 「ゼーマン効果」の意味・わかりやすい解説

ゼーマン効果
ゼーマンこうか
Zeeman effect

P.ゼーマンは,発光する原子を磁場の中に置くと,もともと1本であったスペクトル線が数本に分れることを見出した。これをゼーマン効果という。正常ゼーマン効果では,1本のスペクトル線が3本に分れ,その間隔は μBH に等しい ( μBボーア磁子H は磁場の強さ) 。一般に,スペクトル線の分裂の様子はもう少し複雑であり,異常ゼーマン効果と呼ばれる。ゼーマン効果が起るのは,原子内の電子が軌道角運動量やスピン角運動量をもっているため,磁気モーメントをもち,磁場の中に置かれると磁気モーメントの向きによってエネルギーが変るためである。

出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報