原子スペクトル(読み)げんしすぺくとる

日本大百科全書(ニッポニカ) 「原子スペクトル」の意味・わかりやすい解説

原子スペクトル
げんしすぺくとる

原子が放射または吸収する光のスペクトル。太陽の光をガラスのプリズムを通して白い紙に当てると、虹(にじ)のような七色が見える。ニュートンはこれにスペクトルという名を与え、太陽の光は種々の色の光が混じったものであることを初めて明らかにした(1670ころ)。高温の気体から放射される光はとびとびの波長をもった単色光からなり、これを分光器を使って波長に対して分散させると、元素の種類に特有の輝線スペクトルが観察される。これと逆に、連続スペクトルをもつ光を試料元素中に通すと、その元素に固有の波長の光だけが吸収されて暗線を生じ、吸収線スペクトルを示す。これらの線スペクトルは、元素の種類に応じ、その線間隔と強度が完全な規則性をもって並んでおり、スペクトル系列を形づくる。スペクトル系列の研究は19世紀の終わりから20世紀の初めにかけて盛んに行われ、原子構造の解明と量子物理学の発展に重要な役割を果たした。

 バルマーは、水素原子の可視部に現れる4本の輝線の波長λ(ラムダ)が、定数Gと正の整数mのみで表される簡単な式で精度よく再現できることをみいだした(1885)。

  λ=Gm2/(m2-4)
ここでGは3645.6×10-8センチメートル、mは4本の輝線に対して3、4、5、6を代入する。後にリュードベリは、波長の逆数(波数)をとると、この式がより一般的な形で表されることを示した(1889)。

  1/λ=R(1/n2-1/m2),(nm
ただし、nは正の整数、Rリュードベリ定数を表し、R=4/Gである。これは今日バルマーの公式とよばれるものである。バルマーが最初にみいだした式は、このバルマーの公式においてn=2とした特別な場合である。n=2の系列はバルマー系列とよばれるが、m>7に相当する輝線もその後の観測により発見され、バルマーの公式と高い精度で一致することが確認された。また、n=1に相当する極紫外部の系列(ライマン系列)やn=3に相当する赤外部の系列(パッシェン系列)の存在も後の観測により確かめられた。バルマーの公式は水素原子のスペクトル線の波数が項R/n2の差で表されることを示しているが、水素原子に限らずスペクトル線の波数は二つのスペクトル項Tの差で与えられる(リッツ結合原理)。

  1/λ=TnTm
 水素原子の場合にはTnR/n2であり、nは正の整数(主量子数)である。多電子原子の場合にはTnR/ne2ne(有効量子数)は整数からすこし外れてくる。主量子数と有効量子数との差は量子欠損とよばれる。バルマーの公式に量子欠損を取り入れ、多電子原子にも適用できる形にしたものをリュードベリの公式とよぶ。

 スペクトル項が実は原子のエネルギー準位を表すものであることを初めて明らかにしたのはボーアである(1913)。ボーアは古典量子論を用いてエネルギー準位を計算し、エネルギー準位間の遷移という考えを適用して、水素原子に関するスペクトルを説明した。その後、量子力学が確立して以後は、複雑な原子のスペクトルに関する解釈も完全に行われるようになった。スペクトル項に名前をつけるため、普通4通りの量子数の組を使い、これを一つの記号で表す。すなわち、主量子数nでだいたいのエネルギーが決まり、軌道角運動量を表す方位量子数Lスピン角運動量の量子数S、軌道とスピンを合成した内部量子数Jなどで準位の微細構造が決まる。L=0, 1, 2,……の項を表すのにそれぞれS、P、Dなどの記号を使う。また2S+1を多重度とよぶ。S=0, 1/2, 1,……の項はそれぞれ一重項、二重項、三重項である。項の記号は、以上をまとめて、n2s+1LJの形に書く。たとえばn=2, L=0, S=1/2, J=1/2なら22S1/2となり、n=3, L=1, S=1, J=2なら33P2となる。

 光の吸収または放射によってどの項の間にも遷移がおこりうるかというと、そうではない。光学的遷移には選択則があって、選択則を満たす遷移(許容遷移)だけがおこりうる。方位量子数に関しては量子数L変化が±1だけの遷移が許される。またスピンSの変化を伴う遷移は禁じられている。

 スペクトル項はまた原子核の磁気モーメントの影響でいくつかの副項に分岐することがある。これを超微細構造とよぶ。水素原子メーザーは、水素原子の基底状態の超微細構造準位の間の遷移を利用してマイクロ波を発振する装置である。原子スペクトルは今日では、元素分析やレーザーに応用されるほか、太陽や星の研究に重要な役割を果たしている。

 プリズムや回折格子をレンズや球面鏡と組み合わせた通常の分光実験法を用いて観測された原子スペクトルの実験結果は、1940年代のなかばごろまでにすべて量子力学によって説明されるようになったが、その後開発された精密分光技術によって、原子スペクトルの研究は量子電磁力学や場の量子理論の対象となる物理学の基本問題の研究に適用されるようになった。1947年ラムとレザフォードRobert Curtis Retherford(1912―1981)は2S1/2状態に励起(れいき)された水素原子の原子ビームを使いマイクロ波磁気共鳴法に基づいて2P1/2状態との間にエネルギー差があることを発見し、その値を測定した。このエネルギー差はラム・シフトとよばれ、その値は2S1/2状態の励起エネルギーの100万分の1程度にすぎないが、場の量子論の解明のためには重要な知見であり(1955年ラムはノーベル物理学賞を受賞)、まもなく朝永振一郎(ともながしんいちろう)、シュウィンガー、ファインマンらによって理論的に説明され(1965年3人は共同でノーベル物理学賞を受賞)、量子電磁力学の進歩に大きな貢献を果たした。その後、ラムゼー、デーメルト、パウルらは原子ビーム法、イオン・トラップ法と各種の共鳴法を組み合わせた分光技術を開発して、精密原子分光学の進歩に貢献した(1989年3人同時にノーベル物理学賞を受賞)。今日ではレーザー技術の発展とともに、光コム、光格子などの新しい技術が精密分光に導入され、極限的な精密測定が行われるようになった。そのような精密原子分光技術は、基礎物理実験のほか、原子時計の安定性向上などにも応用されている。

[鈴木 洋・中村信行 2015年9月15日]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

ブリタニカ国際大百科事典 小項目事典 「原子スペクトル」の意味・わかりやすい解説

原子スペクトル
げんしスペクトル
atomic spectrum

自由な状態にある原子が放射または吸収する光のスペクトル。原子スペクトルは特殊な場合を除いてはスペクトル写真の上で線状のスペクトルを示すので線スペクトルともいう。原子が光を放射,吸収するのは原子核のまわりを周回運動している電子のエネルギー状態が変化することに対応している (→リッツの結合原理 ) 。そのような電子のエネルギー状態は各元素に固有であるので,原子スペクトルを調べることで,どの元素の,どのようなエネルギー状態の変化が起きたかを知ることができる。

出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報

今日のキーワード

マイナ保険証

マイナンバーカードを健康保険証として利用できるようにしたもの。マイナポータルなどで利用登録が必要。令和3年(2021)10月から本格運用開始。マイナンバー保険証。マイナンバーカード健康保険証。...

マイナ保険証の用語解説を読む

コトバンク for iPhone

コトバンク for Android