コトバンクはYahoo!辞書と技術提携しています。

ペアノ曲線 ぺあのきょくせん

4件 の用語解説(ペアノ曲線の意味・用語解説を検索)

ASCII.jpデジタル用語辞典の解説

ペアノ曲線

正方形上のすべての点を通るように描かれた曲線。

出典|ASCII.jpデジタル用語辞典
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典 第2版の解説

ペアノきょくせん【ペアノ曲線 Peano curve】

曲線とは連続的に動く点の描く図形と考えられる。したがって,例えば平面上に直交座標系を設定すれば,その平面上の曲線とは,fおよびgを区間[a,b]上で定義された連続関数としたとき,atbであるようなすべてのtに対する点(f(t),g(t))のつくる図形ということができる。しかしこのように曲線を定義するとき,意外なものが曲線の仲間に入ってくることをG.ペアノは1890年に発見した。すなわち,彼は正方形のすべての点をくまなく通るような曲線の実例を与えて当時の数学界を驚かせた。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

ブリタニカ国際大百科事典 小項目事典の解説

ペアノ曲線
ペアノきょくせん
Peano curve

G.ペアノは,連続曲線であって,一つの正方形の内部を埋めつくすものの例を与えた。このような平面を埋めつくす曲線をペアノ曲線という。ペアノ曲線には多数の重複点がある。

本文は出典元の記述の一部を掲載しています。

出典|ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)の解説

ペアノ曲線
ぺあのきょくせん

平面や空間の一部分をうずめ尽くす曲線をいう。曲線とは、一般にその点の座標が一つの実変数tの連続関数となっているようなものをいう。そこで、曲線というと、滑らかな線の形になっているものだけを想像するが、そうでない曲線もある。イタリアの数学者ペアノは1890年に、正方形の内部をうずめ尽くすような曲線の例をつくった。の(1)のように、正方形D、および区間[0,1]を4等分して、正方形DiDiと線分TiTiを対応させる。このような操作をの(2)、の(3)のように順次行っていく。正方形の列
 DiDijDijk⊃……
に対して、ただ一つの共有点xijkが定まるが、この点を、線分の列
 TiTijTijk⊃……
の共有点tijkに対応させる。対応tijkxijkは、区間[0,1]から正方形D上への連続な写像で、したがって正方形Dをうずめ尽くすような曲線となる。なお、ABは、ABの部分集合であることを表す。以上のように構成された曲線には、二重点、四重点が無限に現れる。一般に正方形をうずめ尽くすようなペアノ曲線には三重点以上の重複点が無限に多く現れることが知られている。ブラウアーの領域の不変性の定理によれば、線分と正方形を連続的に1対1に対応させることはできない。ペアノ曲線は、1対1という条件を落とせば、線分から正方形の上への対応が可能であることを示している。一方、曲線の定義に、重複点が現れないという条件を加えたものを、ジョルダン曲線という。ジョルダン曲線は、正方形をうずめ尽くすようなことはできない。常識的に考えたときの曲線の性質をもっている。[竹之内脩]

出典|小学館 日本大百科全書(ニッポニカ) この辞書の凡例を見る
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典内のペアノ曲線の言及

【曲線】より

…単一閉曲線とその内部の点からなる集合の任意の2点がつねにその集合内にある線分で結べるとき,もとの単一閉曲線を卵形線ovalまたは凸閉曲線という。連続曲線の中には,正方形の内部をうめつくす弧(ペアノ曲線)や一つも接線の引けない単一閉曲線のようなものが存在する。このような病的症状を呈する曲線や,弧が点に退化するような曲線をさけ,さらに曲線の滑らかさを保証するため,通常,曲線というときは,ほとんどすべてのtに対し,f(t),g(t)は何回でも微分可能で,微分f′(t),g′(t)は同時には0にならないと仮定する。…

※「ペアノ曲線」について言及している用語解説の一部を掲載しています。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

ペアノ曲線の関連キーワードベジェ曲線位相幾何学基本群曲面準線ジョルダン曲線放物線カテナリー離心率リヒテンベルク図形

今日のキーワード

平野美宇

卓球選手。2000年4月14日、静岡県生まれ、山梨県育ち。3歳で卓球を開始。07年に小学1年生で全日本選手権大会バンビの部優勝、09年に小学2年生で同大会ジュニアの部初出場を果たし、注目を集めた。13...

続きを読む

コトバンク for iPhone