メーザー(読み)めーざー(英語表記)maser

  • マイクロ波増幅装置

翻訳|maser

日本大百科全書(ニッポニカ)の解説

原子、分子の誘導放射の性質を利用してマイクロ波を増幅または発振させる装置をいう。microwave amplification by stimulated emission of radiation(電磁波の誘導放射によるマイクロ波の増幅、の意)の頭文字をとったもので、アメリカの物理学者C・H・タウンズの命名といわれる。1954年、アメリカで発明された。周波数(記号ν)、位相がきちんとした理想的な波が発生できる。メーザーはその後、同じ原理によるレーザー(ミリ波より短波長のもの)を生み出し(1960)、レーザー時代到来の基となった。[井上久遠]

原理

原子(分子)系または物質系において、それがとりうる状態のなかで任意の二つの状態1、2を考え、それらのエネルギー、原子占有数をそれぞれE1E2E2E1)と、n1n2とする。この系と電磁波との相互作用の形態は、(1)自発放射、(2)誘導放射、(3)誘導吸収、の三つがある。いずれの場合でも、二つの状態で決まるある確率で、周波数ν=(E2-E1)/hhはプランク定数)の電磁波を放射または吸収して同時に原子は遷移する。上の準位(状態)の原子が、電磁波の存在と無関係に自発放射する確率は光の領域では大きく、これによる発光が容易に観測されるのに対し、マイクロ波領域では発光は観測できない。自発放射の確率がν3に比例するためである。一方、(2)と(3)はともに電磁波に誘発されておこる過程で、確率はνの大きさに無関係である。また互いに逆の過程であるため、熱平衡状態にある系ではボルツマン分布にしたがって、低いエネルギー準位にある原子分布数のほうが多いn1n2であることを反映して、正味の現象としては(n1-n2)に比例した吸収のみしか観測されない。これに対して、高いエネルギー状態にポンピングを行うことによってn1n2(反転分布。エネルギーの高い準位の原子分布数が低い準位より多い状態をいい、負温度分布ともいう)にした系では、誘導放射光(入射光と周波数も位相も同じである)として電磁波の増幅または発生が観測できる。これがメーザーの原理で、反転分布は、誘導放射を自発放射や吸収よりも著しく強くおこさせるための重要な条件である。[井上久遠]

メーザーの種類と用途

メーザーはタウンズにより着想され、1954年にアンモニア分子の反転二重項状態間の遷移(νは約24ギガヘルツ)で初めて実現された。アンモニア分子ビームを不均一電場の中を通すことにより、上の準位の分子のみを選別して空胴共振器に入れマイクロ波の自励発振に成功した。その後、さまざまな系でメーザーが実現し、気体メーザーと固体メーザーに大別されている。固体メーザーはルビーメーザーに代表されるがごとく、遷移金属イオンなどを含む常磁性結晶において、磁場印加により分離した電子スピンの副準位間の遷移を利用している。三つの準位を用いて強い電磁波照射によりその中の二つの準位間で反転分布を得る方法が一般的である。
 メーザーの特色は、発振器としては周波数安定性が抜群によく、増幅器としてはきわめて低雑音で増幅できることである。前者はアンモニア分子線メーザーや水素原子線メーザー(νは約1420メガヘルツ)などの気体メーザーにより周波数標準または原子時計に、あるいは高分解能の分光に利用されている。後者はおもに固体メーザーを用いて微弱信号観測のための増幅器として、電波望遠鏡や高感度レーダーに利用されている。なお、宇宙空間ではいろいろな分子で自然にメーザーが実現していると考えられ、それからの電波が観測されている。[井上久遠]
『J・R・ピアース著、霜田光一・藤岡知夫訳『量子エレクトロニクス』新装版(『現代の科学5』1977・河出書房新社) ▽大津元一著『レーザーと原子時計』(1986・オーム社)』

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例