レーザー(読み)れーざー(英語表記)laser

翻訳|laser

日本大百科全書(ニッポニカ) 「レーザー」の意味・わかりやすい解説

レーザー
れーざー
laser

励起状態にある原子、物質の誘導放射の性質を利用して光(電磁波)を発生させる装置をいう。light amplification by stimulated emission of radiation(誘導放射による光の増幅)の頭文字からつくったことばである。発生する光そのものをレーザー光という。サブミリ波から真空紫外光領域に至る波長範囲のものをレーザーといい、ミリ波より長波長のものは別にメーザーという。

 1954年に発明されたメーザーの拡張としてアメリカの物理学者C・H・タウンズとA・L・ショウロウがレーザーの可能性を具体的に提唱し、1960年にルビー結晶でメイマンTheodore Harold Maiman(1927―2007)が初めてレーザー発振に成功した。以後、次々とレーザーが発明され、現在では非常に多くの原子、分子、物質を用いて多種多様なレーザーが実現している。その結果、われわれの身近なものも含めて社会の非常に広範な分野において、これらのレーザーが使われている。

[井上久遠]

原理

基本的にはメーザーの原理と同じである。原子集団(または物質)の適当な二つのエネルギー準位間で反転分布(エネルギーの高い準位の原子分布数または電子分布数が低い準位より多い状態をいい、負温度状態ともいう)をつくる。二つの準位間のエネルギーに共鳴する周波数をもつ光に誘発されて上の準位の原子(電子)が下の準位に遷移してエネルギーを光に与える誘導放射がおこる。その結果、外部から入射させた光は周波数、位相が同じままで強度が増大する。これをコヒーレント(可干渉)な光の増幅という(反転分布がない通常の場合に生じる光吸収の逆の現象である)。負温度媒質を光の共振器の中に置き、増幅された光の一部分または相当部分を繰り返し往復させる(帰還―フィードバックさせるという)と、光の自励発振がおこりレーザーとなる。図Aに基本構成図を示す。外部から光を入れなくとも共振器内部で自発放射で発生する弱い光が種となって光共振器の特定の一つ、または複数の共振モードでのみ発振する。したがってレーザー光は位相のそろった波となり、通常の光とは本質的に性質が異なる(通常の光は自発放射によるものであるので、たとえば、ナトリウムランプから取り出した一つのスペクトル線の光でも周波数が少しずつ異なった無数の、そして位相も無秩序な光である)。光の共振器は基本的には反射率の高い二つの平面鏡(凹面鏡も使う)を、光の波長よりはるかに長い距離だけ離して互いに平行に向かい合わせて置いたもので、これをファブリー・ペロー型共振器という。この場合には面に垂直な定在波が共振モードになり、隣り合ったモードのエネルギー間隔は同じになる。後述するように、鏡を用いずに、光を伝搬させる方向に一次元の屈折率の周期構造(回折格子)を利用する分布帰還型共振器もある。レーザー媒質で増幅可能な周波数範囲にかなりの数の光の共振モードが存在するので、複数個のモードでレーザーが同時に発振するのが普通である。特殊な方法により一つのモードで発振させたものを単一周波数レーザーという。なお、連続的に光が持続する連続波レーザーのほかに、一定時間だけ光が持続するレーザーもあり、これをパルスレーザーという。

[井上久遠]

反転分布をつくる方法

方法はさまざまであるが、代表的なものに光ポンピング法があり、固体、液体レーザーでおもに用いる。たとえば図Bに示したように四つの準位を利用する。強力なランプ、他のレーザー、あるいは光放射ダイオード(いわゆるLEDで、近年多用されるようになった。発光ダイオードともいう)からの光を照射して、光吸収により基底準位0から準位3(多くはバンド)に原子あるいは分子を励起する。これらの原子、分子、あるいは固体中の電子は短時間に非放射遷移により2の準位に移り、その結果2と1の準位間で反転分布が生じる。これを四準位レーザーという。下の準位として1のかわりに基底状態0を用い、準位2と0の間で反転分布を得る三準位レーザーもある。気体レーザーでは希薄にした気体を放電し非熱平衡状態にすると、電離した電子との衝突により原子が励起され適当な二つの励起エネルギー準位間(中性原子のほかに電離した原子の励起準位も含む)で反転分布が実現する。半導体レーザーでは電流注入型レーザーが一般的である。pn接合をつくり、順方向に電圧をかけると、接合領域で注入された電子と正孔の再結合により光の増幅がおこる。つまり伝導帯と価電子帯の間で反転分布が生じる。ほかにも電子ビーム照射や、化学反応を利用した方法などいろいろある。最後に、自由電子レーザーでは、加速器により高速に加速された電子ビームを、空間変調された静磁場中に通し変調することにより、コヒーレントな光を発生させている。大出力が得られること、および広い範囲で波長を変えられる特色がある。このレーザーでは、通常のレーザーのように原子(中性、イオン)、分子、固体中の原子または電子の離散的なエネルギー準位、あるいはバンド間の反転分布を利用していないが、一般的にレーザーとよんでいる。なお反転分布を必要としない他のレーザーの例として、それぞれ非線形光学現象の一つである誘導ラマン効果あるいは光パラメトリック現象を利用してコヒーレントな光を得る方法があり、それぞれを誘導ラマンレーザーおよびパラメトリック発振器とよんでいる。

[井上久遠]

レーザー光の特性

(1)可干渉性(コヒーレンス)に優れている。通常の光の干渉可能な距離が優れたスペクトル光源でもたかだか数十センチメートルなのに対し、レーザー光でははるかに遠く離しても干渉する。

(2)指向性がよい(ただし、半導体レーザーを除く)。回折限界できまるわずかな広がりで直進する。

(3)単色性に優れている、すなわちスペクトル純度がきわめてよい。極端に狭いスペクトル幅の中に膨大な数の光子が集中している。

(4)したがって、輝度温度が非常に高い。太陽表面の輝度温度6000Kより桁(けた)違いに高温である。

(5)レンズで集光すると、単位面積を単位時間に通過する光エネルギー(ポインティングベクトル)が非常に大きい。とくにパルスレーザー光の場合、閃頭(せんとう)光出力が大きく莫大(ばくだい)な値となる。その結果、光の電場の強さ(磁場の強さも)はきわめて大きく108V/m程度あるいはそれ以上の値に容易に達する。

(6)特別な場合、10-13秒程度の極端に短い時間幅の光パルスが得られる。なお、最近の研究では、わずか数フェムト秒(1フェムト秒=1000兆分の1秒)だけ持続する(たとえば2×10-15秒程度の時間幅の)超短時間光パルスも得られている(これは1サイクルあるいはそれ以下しか振動しない光に対応する)。

[井上久遠]

レーザーの種類

波長領域による種類では、紫外レーザー、可視レーザー、赤外レーザー、遠赤外レーザー、さらに真空紫外レーザー、X線レーザーがある。動作媒質に関しては気体、固体、液体、半導体の各レーザーの種類がある。

[井上久遠]

気体レーザー

気体レーザーは動作物質として中性原子、電離原子、分子を用いたものである。ヘリウムネオンレーザー(波長633ナノメートル)、アルゴンイオンレーザー(波長488と515ナノメートル)、炭酸ガスレーザー(波長9.4と10.4マイクロメートル)、塩化ゼノン、フッ化アルゴン(波長はそれぞれ308と193ナノメートル)などのエキシマーレーザーなどが代表的なものである。

[井上久遠]

固体レーザー

固体レーザーは遷移金属、希土類元素イオンを均一性のよい結晶あるいはガラス、もしくは光ファイバーに不純物としてわずかな量(0.1~数%)を溶かしたものや、色中心を含む結晶が用いられる。クロムイオンをサファイア結晶に混入させたルビーレーザー(波長694ナノメートル)、ネオジムイオンをイットリウム・アルミニウム・ガーネット結晶またはガラスに入れたNd‐YAGレーザー(波長1.06マイクロメートル)、ガラスレーザー(波長1.05マイクロメートル)、チタンサファイアレーザーなどが代表的なものである。とくに、チタンサファイアレーザーは共振器内に入れた波長選択素子によりレーザーの波長を連続的に変えることができるので広い用途がある(波長可変範囲は680~1100ナノメートル)。このレーザーはまた、モード同期法(ファブリー・ペロー共振器の多数の共振モードで発振する場合に、モード間の光の位相を固定する方法)を用いることにより、すでに述べた超短時間パルスを発生させるのにも適している。

[井上久遠]

液体レーザー

液体レーザーではローダミンなどの色素分子を有機溶媒に溶かし、光ポンピング法で励起する色素レーザーが重要である。前述のチタンサファイアレーザーと同様に波長可変レーザーとして(色素の種類によって波長可変範囲が異なる)、あるいは超短時間パルス発生用として使われている。

[井上久遠]

半導体レーザー

社会に与えた影響の大きさの観点からは、あるいは産業界では、半導体レーザー(レーザーダイオードLDともいう)がもっとも重要である。半導体レーザーは直接遷移型のヒ化ガリウムGaAs(波長830~900ナノメートル)などのⅢ―Ⅴ族、Ⅳ―Ⅵ族化合物半導体結晶や、これらの三元、四元混晶が使われている。後者はAlGaAsあるいはGaAsP(ともに波長630~900ナノメートル)、InGaN(波長400~470ナノメートル)、InGaAsP(波長1~2マイクロメートル。主として光ファイバー通信用に使われている)などで、組成比によって発振波長を選ぶことができる。半導体レーザーは電流駆動(励起)で用い、また共振器として、とくに外部の鏡を用いないで、レーザー材料の半導体自身の両端の劈開(へきかい)面(結晶をある特定の方向に沿って割ることによって生ずる平滑な面)を用いるのが一般的である(反射率が比較的高い)。初期のころの半導体レーザーでは、図Cで活性層の上下のp型、n型のAlGaAs層がともにない単純なpn接合の構造を用いていた。最近では、電子も光も活性領域に効果的に閉じ込めるために、図Cに示したように半導体量子井戸(異なる2種類の半導体材料を薄い層状に交互に人工的に積み重ねた構造で、一つの層の中に電子が閉じ込められる)の二重ヘテロ構造を用い、かつ分布帰還型共振器による後方フィードバックを用いたものが汎用されている(実際には活性領域の厚さ方向のみならず、横方向に関しても狭い領域に光を閉じ込める埋込みヘテロ構造を用いる場合が多い)。このタイプのものは、駆動電流が小さくてすむなど優れた特性をもっている。また、前記の劈開面を利用したファブリー・ペロー型共振器のかわりに、分布帰還型共振器を用いて特定の波長のみをフィードバックする単一モード型も開発され、おもに光通信用に活用されている。一般に、半導体レーザーはサイズが非常に小さい(典型的には長さが100~500マイクロメートル)点が他のレーザーにない顕著な特色である。ほかに、電子の伝搬方向と垂直(レーザー基板面と垂直)な方向にレーザー光が生じる垂直共振器面発光半導体レーザー(VCSEL:Vertical Cavity Surface Emitting Laser)も重要である。半導体レーザーは小型電流源で駆動でき、サイズが非常に小さく安価なので、機器に組込みが容易であり使用用途が多い。たとえば、光通信用の光源、コンパクトディスク、バーコードの読取りなどに使われている。なお、半導体レーザーは出力光の強度、周波数の安定度、単一モード発振が容易であるなどの点でも優れている。

 一般に固体レーザーは大出力発生に適し、気体レーザーはコヒーレンスに優れている。後者はまた使える波長範囲が広く、ものによって大出力のものもある。一般に励起をパルスにすると大きなパルス閃頭光出力が得られる。また、上の準位に多量の原子をためておき短い時間に誘導放射を集中しておこさせるQスイッチ法により大出力(50メガワット、30ナノ秒程度は容易)を得ることもできる。

[井上久遠]

レーザーの活用

レーザーはその優れた特性のために非常に広範囲に利用されている。

(1)基礎科学分野の発展に大きな影響を与えた。まず非線形光学nonlinear opticsという新しい学問分野を生み出した。これにより、入射光強度に比例する吸収、発光などの通常の現象のほかに、入射光強度に比例しないさまざまな非線形現象が発見された。たとえば入射光強度の2乗、3乗に比例する場合には、それぞれ入射光の2倍、3倍の周波数の光が発生する現象がわかりやすい例である。非線形光学は物質のもつ新しい特性、機能の開拓や種々の新しい分光法の開発を可能にした。次にレーザーを光源に用いると超高分解能分光や超高感度分光が可能となり、原子、物質の詳しい構造が解明できる。原子、分子、固体で選択的に特別な電子状態を励起できるため、その状態の構造・特性やエネルギー緩和機構、化学反応のミクロな機構などが調べられる。レーザー分光により原子の運動を事実上止めることもできる(レーザー冷却という)。この静止原子によりさまざまな新しい現象(たとえば原子気体のボース‐アインシュタイン凝縮など)の研究が可能になった。さらに超短時間光パルスを用いると物理、化学、生物現象で超高速時間変化の知見が得られるので、微視的レベルでの現象の解明に役だっている。最後に、レーザー自身と前記の分野を総合した新しい学問分野を量子光学とよぶ。最近のこの分野の進歩として、量子力学の基礎にかかわる種々の現象検証とその応用の研究があげられる。すなわち、それぞれ位相スクイーズ(圧搾)状態の発生と検出などと、量子暗号法、量子テレポーテーション、量子計算機である。

 超高分解能分光の応用としてレーザーによるウランなどの同位体分離ができる。ほかに、ラマン散乱のようなレーザー光散乱分光法が普及している。物質の分析に、すなわちそれぞれの固体が示す固有な特性を担う素励起を解明するのに威力を発揮している。レーザーはまた長さの標準にも使われるし、重力加速度の精密測定や相対論の検証にも使われている。

(2)レーザーの実用的応用も多種多様である。レーザー光の優れた単色性、指向性を利用し種々の精密測定ができる。距離、位置、変位、速度などを高精度に測るのに利用される。測距には時間幅の狭いパルス光を飛ばし反射して戻るまでの時間を測るレーザーレーダーがある。地球と月の正確な距離、人工衛星を利用した地球の形の精密な決定、大陸間の距離の精密測定、あるいは気象用として雲の高さの測定など多くの例がある。

 光の干渉を利用して機械系の微小変位、変動を光の波長の精度で測ることや、マイクロメートル以下の粒子の径の精密測定、地殻の変動測定、たとえば地震の予知用などにも利用されている。照準としての応用もある。トンネルをまっすぐに掘る場合、荷電粒子用の加速器の軌道を精度よくつくる場合、また長野県野辺山(のべやま)の直径45メートルの電波望遠鏡で多くのパネル板を正確に並べる場合などに用いられている。ドップラー効果を利用して飛行粒子、物体の速度を正確に測るレーザードップラー計も実用化されている。

 レーザーにより人体の血流も測ることができる。レーザーによる測定は一般に無接触なため、振動部分、高電圧部分、高温部分、人体などで使うのに適する。

 環境保全関係では、レーザーを大気中に飛ばして種々の浮遊分子からの散乱光を解析して、それらの種類、濃度分布および位置を調べることができる。レーザーにより温度測定も可能であり、炎や車のエンジンの燃焼温度、含まれる分子の種類、分布も同定できる。

 高出力レーザーを集光すると高エネルギー密度になり超高温が得られるので、加工、切断、溶接などに使われる。ダイヤモンド、金属あるいは服地などの穴あけ、切断や超LSIなどの超微細加工、IC上の文字書きなどに使っている。電子ビーム加工法に比べて真空を必要としない利点がある。表面処理(アニーリング)として金属の焼入れや、基板上に蒸着した物質をレーザー照射で融解したうえで、結晶化させ新物質をつくるのにも使われている。医用では剥離(はくり)網膜のつなぎ合わせや、外科手術用のレーザーメスに利用されている。無接触でしかも血液を凝固させる利点がある。医用ではほかにもレーザー内視鏡や血流検査など多くの応用がある。なお、超高温を利用して大出力レーザーによる核融合の研究も進められている。

 波動としての応用に光(ひかり)通信がある。光は電磁波として周波数が高いので伝送周波数帯域がマイクロ波に比べてはるかに広くとれ、大量の情報を送ることができる。光ファイバー伝送により国内、大陸間の電話通信網(インターネット、携帯電話網ほか)などの実用化が進んでいる。光源としては半導体レーザーを、大陸間の海底における光増幅器としては光ファイバー中に溶かし込んだユーロピウムイオン(1.55マイクロメートル帯の場合)などを光励起したものを用いている。なお、光ファイバーによる長距離光通信においては、現在のところ、いまだ電波領域におけるようにレーザーのコヒーレンシーを利用するには至っていない。

 コヒーレンスがよいことを利用し、新しい情報記録法、ホログラフィーが登場した。通常の写真が光の強度のみを記録するのに対し、物体波の位相の情報も記録する方法で、物体波ともう一つのレーザー光との干渉縞(じま)を記録する。フィルムにレーザーを照射して再生するが、見る角度により像が変わり、三次元的像が再現する。1枚のフィルムに多くの像を同時に記録できるので大量情報記録にも適し広範な応用がある。

 情報記録としてはほかに光ディスクが普及している。レーザーで小さな穴の列をつくって記録し、別の小型レーザーで読み取るもので、大容量記録に適し、コンピュータにも使われている。雑音に強いためオーディオコンパクトディスク、ビデオディスク、DVDなどが普及してきた。ほかにも応用として高速打ち出し可能なレーザープリンター、ファクシミリ、印刷機など、また身近なところでレーザーアート、スーパーマーケットなどにあるバーコードリーダーなど枚挙にいとまがない。

[井上久遠]

『霜田光一著『レーザー物理入門』(1983・岩波書店)』『J・ウィルソン、J・F・B・ホークス著、清水忠雄監訳『レーザ入門――基礎から応用まで』(1992・森北出版)』『A・ヤリーヴ著、多田邦雄・神谷武志監訳『光エレクトロニクス 基礎編』原著5版(2000・丸善)』『久我隆弘著『量子光学』(2003・朝倉書店)』『J・ヘクト、D・テレシー著、井坂清訳『レーザーの世界』(講談社・ブルーバックス)』


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

ブリタニカ国際大百科事典 小項目事典 「レーザー」の意味・わかりやすい解説

レーザー
laser

光の周波数の領域で単色性にすぐれ,干渉性のよい電磁波を発振する装置。波長がきわめて短いので 10-4rad 程度の鋭い指向性も可能である。出力は数 mW程度のものから連続で 100kW,パルスで 1014W に達するものまである。応用範囲は広く,精密計測,ホログラフィー,通信,測量,分光学などの物理研究,生物・医学研究,溶接,特殊材料の加工などに使われる。 1958年 A.L.ショーローと C.H.タウンズによって理論的に提唱され,60年 T.H.メーマンによってルビーレーザーとして初めて実現された。 light amplification of stimulated emission of radiationの頭文字をつなぎ合せてレーザーと名づけられたが,この言葉は原子や分子のもつエネルギー準位の間の遷移を利用し,誘導放出により光を増幅する仕方を表わす。光増幅の媒質としては気体,液体,固体の3態があり,周波数領域は赤外,可視,紫外,X線にわたっている。発振はこれら光増幅媒質にファブリ=ペローの干渉計などの正のフィードバックが組合わされて生じる。

出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報