コトバンクはYahoo!辞書と技術提携しています。

回帰分析 かいきぶんせき

ASCII.jpデジタル用語辞典の解説

回帰分析

相関関係や因果関係があると思われる2つの変数のうち、一方の変数から将来的な値を予測するための予測式(回帰直線)を求めるための手法。2組のデータの傾向を分析するために行われる。

出典|ASCII.jpデジタル用語辞典ASCII.jpデジタル用語辞典について | 情報

デジタル大辞泉の解説

かいき‐ぶんせき〔クワイキ‐〕【回帰分析】

ある変数が他の変数とどのような相関関係にあるのかを推定する統計学的手法の一。原因となる変数x(説明変数)と、結果となる変数y(目的変数または被説明変数)の間に、回帰式yaxbと表される関係があるとすると、xyの観測値から最小二乗法を用いてabが求められる。この回帰式をもとに将来予測や要因分析を行う。

出典|小学館デジタル大辞泉について | 情報 凡例

人材マネジメント用語集の解説

回帰分析

・回帰分析 regression analysis
説明変数目的変数の関係を回帰式で表し、目的変数が説明変数によってどの程度
説明できるかを定量的に分析することである。
・回帰式は、y=ax+b(x:説明変数、y:目的変数)で表される。
・目的変数とは予測や要因分析を行う変数のことで、説明変数とは目的変数に影響を
与えると考えられる変数のことである。
・回帰式を求めるのに変数a、切片bを推定する。推定には最小二乗法を用いる。最小
二乗法は、観察された各点(x,y)と回帰線上の各点(x,yi)との残差dの平方和が最小
となる直線を求める方法である。
・回帰分析は、予測・要因分析等に用いられる。例えば、過去の生産量と製造費用の
データから回帰式を求め、将来の生産量に対する製造費用の予測に活用される。この
場合、生産量(x)に対する製造費用(y)の過去のデータから回帰式を推定する。生産
量(x)1単位当りの製造費用(y)がどれ程増加するかを示す傾きaは変動費、切片bは
固定費となる。将来の生産量(x1)を回帰式に代入すると将来の製造費用(y1)が導
かれる。
・予測をする際には、回帰式の精度の良さの尺度となる決定係数(0〜1の値)が1に
近い(当てはまりが良い)のが望ましい。
・また回帰分析は、因果関係が想像される2つの変数の関係を調べるのに用いられる
が、回帰式は、ある変数が増加(減少)すれば、もう一方の変数が増加(減少)する
という関係性を示しているだけで、変数間に因果関係が本当に存在するかは注意して
判断しなければならない。

出典|(株)アクティブアンドカンパニー人材マネジメント用語集について | 情報

栄養・生化学辞典の解説

回帰分析

 二つもしくはそれ以上の因子の間の関連性を回帰線などを用いて分析する操作

出典|朝倉書店栄養・生化学辞典について | 情報

ブランド用語集の解説

回帰分析

回帰分析とは独立変数従属変数の間の関係を推定するための統計的手法のことをいう。独立変数が1つなら単回帰分析、独立変数が2以上なら重回帰分析という。一次式を用いた線形回帰モデルが用いられることが多いが、それ以外の式を用いた非線形回帰モデルもある。

出典|(株)日本ブランド戦略研究所ブランド用語集について | 情報

世界大百科事典 第2版の解説

かいきぶんせき【回帰分析 regression analysis】

なんらかの操作や活動結果を予測したり,その結果の変動を制御したりするための手法で,統計的多変量解析の一つ。操作や活動のデータとそれに対応する結果のデータの組を多数集め,予測の対象とする量(目的変数もしくは従属変数と呼ぶ)の変動を,操作や活動のデータのうちその変動を説明する要因と考えられるデータ(説明変数もしくは独立変数と呼ぶ)によって予測するために,両者の関係を求めることをいう。製鉄所の炉の制御や化学工場での操業条件の決定のための工程解析をはじめ,経済データの分析や予測,心理学や医学など,多くの分野でもっともよく使われる統計的手法である。

出典|株式会社日立ソリューションズ・クリエイト世界大百科事典 第2版について | 情報

大辞林 第三版の解説

かいきぶんせき【回帰分析】

多変量の関係を解析する手法。一つの変数y が、他の変数(説明変数)x 1, x 2, …, x k の一次式(回帰式)で表されると仮定し、その係数を最小二乗法などで推定する。

出典|三省堂大辞林 第三版について | 情報

ブリタニカ国際大百科事典 小項目事典の解説

回帰分析
かいきぶんせき
regression analysis

2つの変数 xy の間に,yabx ( ab は定数パラメータ) のような線形関係の数式モデルを仮定して,xy についてのいくつかの観測あるいは測定データから,最小二乗法により未知パラメータ ab を推定する方法。 y を目的変数,x を説明変数という。理学,工学で実験式を求める場合や,経済学で経済 (予測) モデルをつくるのに,広く用いられる。説明変数が2つ以上あるときは,重回帰分析と呼ばれる。

出典|ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について | 情報

日本大百科全書(ニッポニカ)の解説

回帰分析
かいきぶんせき
regression analysis

ある変数の動きが、他のどのような変数を原因としておこされるものであるか、その影響力はどれほどのものであるか、その変動全体のどれほどの部分がそれらの他の変数によって説明されるのかなどの問題を、統計的手法を用いて数量的に解析すること。[高島 忠]

線型回帰モデル

いま、ある変数Yがk個の他の変数X1、X2、……、Xkの影響を受けて変動すると考えられるとき、その関係は、a0、a1、a2、……、akを定数として
  Y=a0+a1X1+a2X2+……+akXk+V
と表される。ここで、Vはこの関係式に採用されたk個の変数以外の要因からくるYへの影響を集約して表現する変数であって、その値は、なんらかの確率的な法則に従って発生するものと考えられる。X1、X2、……、Xkは説明変数、Yは被説明変数、そしてVは確率攪乱(かくらん)項とそれぞれよばれる。
 以下、取扱いを簡単にするために、説明変数が1個である場合について述べよう。Xがx1の値のときYはy1であり、x2のときy2であるというように、XとYに関して対応するデータをn組とする(観測する)。そして、それぞれの場合におけるX以外の要因の効果を表すもの、つまり、確率攪乱項をv1、v2、……、vnとすると、
yi=a+bxi+vi (i=1,2,……,n)
となる。これは、もっとも簡単な線型回帰モデルである。[高島 忠]

パラメータ(係数)の推定

n組のデータ(x1,y1),(x2,y2),……,(xn,yn)から未知の係数a、bを求めるには、最小二乗法が用いられる。それは、この方法によって得られるa、bの推定量が、確率攪乱項viに関するある仮定の下で、推定式として統計的に望ましい性質を備えているからである。
 推定量を用いて計算されるyiの値と実際の観測値yiとの誤差をeiとすると、は、その誤差の2乗和

が最小になるように求められる。すなわち、Eが極値をとる条件として、およびでそれぞれ偏微分したものを0とおいて、

という連立方程式が得られる。これは、線型回帰モデルの未知のパラメータa、bの値を推定するための正規方程式とよばれる。これを解くことによって、は次のように得られる。

ここで、Σはすべてiについての1からnまでの和を表す。[高島 忠]

回帰直線の性質

このようにして求められる回帰係数については、正規方程式の第1式から、をそれぞれxiおよびyiについての平均値として
  
の関係のあることがわかるので、回帰直線は、XおよびYの観測値の各平均値を座標とする点()を通る。また、誤差eiの総和は0となるので、観測値を描いたグラフ上で、回帰直線より上方にある観測点から回帰直線までの距離の総和は、下方にある観測点から回帰直線までの距離の総和にかならず等しい。[高島 忠]

決定係数

変数yに対する変数xの影響力(説明力)の強さは、回帰直線に対する変数yiのばらつきの大きさによって測られる。
 それは、iを回帰係数を用いたyiの計算値とするとき

として表され、決定係数とよばれる。[高島 忠]
『森田優三著『新統計概論』(1974・日本評論社) ▽J・ジョンストン著、竹内啓他訳『計量経済学の方法』(1975・東洋経済新報社)』

出典|小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について | 情報 凡例

世界大百科事典内の回帰分析の言及

【季節変動】より

…一つは経済データを作成する政府系機関等がよく用いるもので,考える変数の原系列を適当な長さの移動平均で割って季節指数を求め,さらにこれを年間平均が100になるように調整したうえで,原系列に適用することによって季節変動を除去した系列が求められる。これに対して,回帰分析を用いる方法も存在する。考えている変数の中・長期的な変動を説明する変数とともに,季節ダミーを回帰式の右辺に導入し,季節変動の部分を後者によってとらえようとするものである。…

※「回帰分析」について言及している用語解説の一部を掲載しています。

出典|株式会社日立ソリューションズ・クリエイト世界大百科事典 第2版について | 情報

回帰分析の関連キーワードエコノメトリック・モデルリグレッション分析コリレーション分析二次計画法多重共線性計量政治学重相関係数数量化Ⅰ類ピアソンシムズ

回帰分析の関連情報