ウラン濃縮(読み)うらんのうしゅく

日本大百科全書(ニッポニカ) 「ウラン濃縮」の意味・わかりやすい解説

ウラン濃縮
うらんのうしゅく

ウラン235は天然ウラン中にわずか0.72%しか含まれていない同位体であるが、その存在比を人工的に大きくする操作がウラン濃縮uranium enrichmentで、その操作の結果得られるものが濃縮ウランである。濃縮ウランは、原子力発電や核兵器燃料として用いられる。

 第二次世界大戦中のマンハッタン計画(原爆製造計画)でアメリカは、当時知られていたあらゆる同位体の分離法を試みた。それは、核分裂性核種であるウラン235を分離濃縮できさえすれば、容易に高性能の爆弾をつくれる見通しがあったからである。図Aは、ウラン235の濃縮度と核爆発をおこすのに必要な最小限の質量臨界質量)との関係を示すもので、これから濃縮度30%以下では実際上、核爆弾材料にはできないことがわかる。平和利用を目的とした濃縮ウランの輸出に際して、核不拡散を目的として濃縮度が通常20%以下に制限されるのはこの理由による。

[中島篤之助・舘野 淳 2015年9月15日]

濃縮ウランの製造方法(ウラン濃縮法)

各種のウラン濃縮法(ウラン濃縮技術)については、それぞれ後述するが、歴史的にもっとも重要であったのは「ガス拡散法」である。先にも述べたマンハッタン計画により、アメリカは第二次世界大戦中およびその直後にガス拡散法に基づく三つの巨大な濃縮工場を、23億ドルの巨費を投じて建設した。その能力合計は1万7200トン分離作業単位に達し、1970年ごろまでは資本主義圏全生産量の95%を占めていた。このことが、同じ核分裂を利用する原子力発電において軽水炉が世界の原子炉市場を制覇するに至った理由である。ソ連(現、ロシア)、イギリス、中国、フランスもガス拡散法の工場を建設、運転していたが、これらの国々は「遠心分離法」に転換しつつある(図B)。なお「遠心分離法」は、日本でも行われている。日本原燃(株)は、かつて動力炉核燃料開発事業団(動燃)の人形峠事業所(のちの核燃料サイクル開発機構、現在の日本原子力研究開発機構・人形峠環境技術センター)が研究開発した遠心分離法によるウラン濃縮の技術成果を基にして、1992年(平成4)より青森県六ヶ所村で商業用プラント操業を行っている。この方法は比較的小規模な工場で高濃縮ウランをつくることができるので、核拡散に直結した「センシティブ(機微)な技術」とよばれる。

 そのほかに研究開発段階のもので「レーザー法」「化学交換法」などがある。このうち「化学交換法」は旭化成(株)の日向(ひゅうが)工場のパイロット・プラントで、世界に先駆けて成功したが、現在は研究が中止されており、実用化はされていない。

[中島篤之助・舘野 淳 2015年9月15日]

各種のウラン濃縮法の比較

現在、実用および研究開発中のおもなウラン濃縮法を以下に示す。

(1)ガス拡散法 気体状化合物としては六フッ化ウラン(UF6ガス)を用い、分子の拡散速度の差を利用する濃縮法。特殊な隔膜を通して気体を拡散させると、気体分子の質量の比の平方根に比例して同位体の分離が行われることを利用する。設備に可動部が少ないため、構造が単純で容量の拡大が容易なことから、大容量の処理に適しているが、カスケード(拡散筒の集合体)1段当りの分離係数が小さく、電力消費量が大きいなどの難点がある。現在実用化されている。

(2)遠心分離法 UF6ガスを用い、縦形円筒を高速で回転させると、遠心力の作用で、質量数の大きいウラン238は外側に、ウラン235は内側に集まりやすいことを利用する。ガス拡散法に比べて分離係数はずっと大きく、電力消費量も10分の1程度になる。規模も小さく経済性に優れているが、機構的に複雑で高度な産業技術が必要とされる。周速の大きい長胴型の高性能遠心機をいかに安価で量産するかが、この方法の成功の鍵(かぎ)である。軽量で強靭(きょうじん)な材料としてチタン系合金が用いられるが、高速回転を可能にする「軸受」の開発が技術の鍵をにぎっている。現在実用化されている。

(3)化学交換法 4価ウランと6価ウランの交換反応を利用する。イオン交換樹脂で多重化。利点としては、可動部が少なく、プラントの小型化、エネルギー消費量の低減化が可能である。しかし、定常達成時間が長い。日本、フランスで研究開発が進められ、日本は成功している。

(4)原子レーザー法 金属ウランを蒸気化し、スペクトルの同位体シフトを利用してウラン235のみをレーザー光でイオン化して分離する。分離係数がきわめて大きく、建設費大幅低減の可能性がある。しかし、大出力レーザーの開発が必要で、ウラン金属の高温での取り扱いが困難である。

(5)分子レーザー法 超音速ノズルで冷却されたUF6ガスにレーザー光を照射し、ウラン235のみを紛体のUF5ガスにして捕集する方法。分離係数が大きく、建設費大幅低減の可能性がある。ただし、高繰り返しレーザーの開発が必要。

[中島篤之助・舘野 淳 2015年9月15日]


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

ブリタニカ国際大百科事典 小項目事典 「ウラン濃縮」の意味・わかりやすい解説

ウラン濃縮
ウランのうしゅく
uranium enrichment

天然に存在するウランは,ウラン 238238U (存在百分率 99.27%) ,ウラン 235235U (0.72%) および微量のウラン 234234U (0.006%) という同位体の混合物である。このうち,核分裂を起こすのはウラン 235だけであるため,ウランを核燃料として使用できるようにするには,ウラン 235の濃度を必要に応じた濃度にまで高めなければならない。ウラン元素の同位体はそれぞれわずかな質量の違いはあるが,化学的特性は同一なので,化学的な方法では分離しにくい。そこで同位体間の質量の差を利用して分離するいろいろな方法が開発されている。代表的なものとしては,運動速度の差を使うガス拡散法,ノズル分離法,質量差を直接使う遠心分離法,電磁法,電子エネルギー順位の違いを使うレーザー法,反応速度差を使うイオン法,光化学的分離法などがある。現在,大規模工業化では,ガス拡散法,遠心分離法によるプラントが中心である。最近ではレーザー法などの開発研究も本格化しつつある。

出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報