改訂新版 世界大百科事典 「ポテンシャル論」の意味・わかりやすい解説
ポテンシャル論 (ポテンシャルろん)
potential theory
ベクトル場FがスカラーUによってF=-gradUと表されるとき,UをFのポテンシャルという。
例えば,三次元空間の,集合Eを占める物体Mがあり,点Q∈Eにおける密度がρ(Q)のとき,万有引力の定数をGとおけば,物体Mによる重力の場Fは,ポテンシャル,の-grad Uに等しい。
P=P(x,y,z)とすると,この関数はポアソンの方程式,をみたす。したがって,とくに,Eの外点では⊿U=0をみたしている。つまり調和関数である。
ポテンシャル論は,もとは物理学の一部であったが,19世紀になって,S.ポアソン,G.グリーン,C.ガウスらによって数学の対象として理論が作られ始めた。とくにガウスの功績は大きい。
ポテンシャル論の対象の一つとして,ディリクレ問題Dirichlet problemがある。これは,与えられた領域で調和で,境界で与えられた関数と一致するものを求める問題である。この問題の解は,適当な質量を用いた積分で表すことができる。例えば,原点O中心で半径がRの球においては,その表面S上に与えられた連続な境界値をfとしたとき,ディリクレ問題の解は,次のポアソン積分によって与えられる。 現在では,一般の空間Xの測度μとX×Xの関数K(x,y)が与えられたときに決まる関数,のことを〈Kを核としμを質量分布とするポテンシャル〉と呼び,このような関数に関連した理論をポテンシャル論という。Xが三次元ユークリッド空間のとき,K(x,y)=|x-y|⁻1を核とするものをニュートンポテンシャルNewton potentialという(dμ=-GρdVとしたものがちょうど前述のものである)。二次元ユークリッド空間では,
K(x,y)=-log|x-y|
を核とする対数ポテンシャルが重要である。じっさい,これは,質量の分布されてないところでは,平面での調和関数であるので,関数論との関連が深い。なお,一般のポテンシャル論は,確率論とも密接な関係がある。
執筆者:及川 廣太郎
出典 株式会社平凡社「改訂新版 世界大百科事典」改訂新版 世界大百科事典について 情報