コトバンクはYahoo!辞書と技術提携しています。

公理 こうり axiom

翻訳|axiom

6件 の用語解説(公理の意味・用語解説を検索)

ブリタニカ国際大百科事典 小項目事典の解説

公理
こうり
axiom

数学の理論をつくるときの基礎におかれる命題で,無証明命題ともいわれる。公理という言葉は,ユークリッドの『原本』に述べられた公準および共通公理からきたものであるが,のちに,幾何学を構成する際の基礎におかれる命題の意味に使われるようになった。

本文は出典元の記述の一部を掲載しています。

出典|ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

デジタル大辞泉の解説

こう‐り【公理】

一般に通用する道理。
数学で、論証がなくても自明の真理として承認され、他の命題の前提となる根本命題。
自明であると否とを問わず、ある理論の前提となる仮定。

出典|小学館 この辞書の凡例を見る
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

百科事典マイペディアの解説

公理【こうり】

古くはユークリッド《幾何学原本》の初めにある〈共通概念〉(1.同じものに等しいものは互いに等しい,2.等しいものに等しいものを加えたものは互いに等しい,3.等しいものから等しいものを引いたものは互いに等しい,4.互いに重なり合う二つのものは等しい,5.全体は部分より大きい)またはこれと公準とを合わせて公理といい,幾何学構成の前提となる自明な命題と考えられた。
→関連項目数学ユークリッド幾何学

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. ご提供する『百科事典マイペディア』は2010年5月に編集・制作したものです

世界大百科事典 第2版の解説

こうり【公理 axiom】

数学や論理学における各理論は,いくつかの命題を前提とし,それらだけを用いて理論が展開される。その前提とする各命題がその理論の公理であり,前提とするいくつかの命題を併せたものが公理系である。採用する公理系を変えれば理論が証明する定理にも変化が起こる。ふつうの幾何学の公理系によるユークリッド幾何学に対し,平行線の公理の採用をやめて,次の(1),(2)の一方を採用した2種類の非ユークリッド幾何学の存在はその例である。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

大辞林 第三版の解説

こうり【公理】

一般に広く通用する真理・道理。 「人生の-」
〔axiom〕
真なることを証明する必要がないほど自明の事柄であり、それを出発点として他の命題を証明する基本命題。
数学の理論体系で定理を証明する前提として仮定するいくつかの事柄。

出典|三省堂
(C) Sanseido Co.,Ltd. 編者:松村明 編 発行者:株式会社 三省堂 ※ 書籍版『大辞林第三版』の図表・付録は収録させておりません。 ※ それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)の解説

公理
こうり
axiom英語
axiomeフランス語
Axiomドイツ語

ある理論の出発点となる仮定を公理という。数学における各理論は、いくつかの命題を前提とし、それらのみを仮定として展開される。すなわち、最初に仮定された命題や、それらからすでに導かれている命題を前提として、次々に新しい命題が導かれるのである。この仮定される最初の前提が、その理論の公理(あるいは公理系)とよばれるものである。
 そのような例としては、たとえば、自然数論の公理系として有名なペアノの公理がある。次の(1)~(5)がそれである。
(1)1は自然数である。
(2)nが自然数ならばn+1も自然数である。
(3)nが自然数ならばn+1≠1である。
(4)n+1=m+1ならばn=mである。
(5)自然数xについての述語P(x)について、P(1)および「任意の自然数kについてP(k)ならばP(k+1)」が成立すれば、すべての自然数nについてP(n)である。
 かつては、公理とは「自明な命題」のことと考えられていた。つまり、いくつかの「自明な命題」から自明でない正しい命題を導き出すものが理論である、と考えられていたのである。紀元前300年ごろ集大成されたといわれているユークリッドの『幾何学原本』(ストイケイア)では、すでに、幾何学がこのように公理的に構成されている。そこでは、「任意の点から任意の点まで直線が引ける」などの公理からなっているが、そのなかには「平行線公理」といわれるものも含んでいる。この公理は他に比べて複雑で、あまり自明とも思われなかったため、他の諸公理から導けるものと考えられていたが、19世紀に至って、平行線公理のかわりに、その否定命題を公理としても新しい幾何学ができることが確かめられた。これが非ユークリッド幾何学である。
 公理とは「自明な命題」ではなく「理論の前提となる仮定」であるという認識は、このような歴史的展開から得られたのである。[廣瀬 健]

出典|小学館 日本大百科全書(ニッポニカ) この辞書の凡例を見る
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典内の公理の言及

【幾何学基礎論】より

…図形は直観的に認識されるものであるが,直観はしばしば客観性を欠くので,明確にいい表された定義や公理の上に,直観を排して厳正な証明によって一貫した論理体系としての幾何学を構成しようという思想である。《ストイケイア》は,まず点,直線,円などの定義definitionを述べ,続いて〈任意の2点は直線で結べる〉のような図形についての五つの基本性質を公準postulateとしてあげ,また〈同じものに等しいものは互いに相等しい〉のような量の相等についての九つの基本事項を公理axiomとしてあげる。そして,これらの定義,公準,公理より出発して順次に論理的推論によって,直観的知見を定理として導き出す。…

【公理系】より

…公理系とは,公理的体系の略称であって,とくに自然科学的学問を体系づける方法のひとつである。そのもっとも古い,しかも有名な例はユークリッド幾何学の体系であるが,20世紀に入って,いっそう明確な性格づけが与えられるようになった。その基本的な着想はつぎのようなものである。まず,一定の学問体系において基本的前提と考えられる命題の一定の組を選び出して,それらを公理axiomとよぶ。公理から一定の推理(推論)方法によって得られる結論を定理theoremとよぶ。…

【幾何学基礎論】より

…この著作は,古くから知られていた図形についての多くの知見を集大成して一つの学問体系にまとめあげたものであるが,これはプラトンによる次の思想の上に成立している。図形は直観的に認識されるものであるが,直観はしばしば客観性を欠くので,明確にいい表された定義や公理の上に,直観を排して厳正な証明によって一貫した論理体系としての幾何学を構成しようという思想である。《ストイケイア》は,まず点,直線,円などの定義definitionを述べ,続いて〈任意の2点は直線で結べる〉のような図形についての五つの基本性質を公準postulateとしてあげ,また〈同じものに等しいものは互いに相等しい〉のような量の相等についての九つの基本事項を公理axiomとしてあげる。…

【形式言語】より

…このシステムは記号論理の推論系を形式化したもので,3項組T=(Σ,Ρ,α)で与えられる。ここに,αは公理といわれる一つの語,Ρはプロダクションと呼ばれる推論規則の集合,Σは公理とプロダクションに現れる文字の集合,つまりTのアルファベットである。実例を作ってみよう。…

【公理系】より

…公理系とは,公理的体系の略称であって,とくに自然科学的学問を体系づける方法のひとつである。そのもっとも古い,しかも有名な例はユークリッド幾何学の体系であるが,20世紀に入って,いっそう明確な性格づけが与えられるようになった。…

※「公理」について言及している用語解説の一部を掲載しています。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

公理の関連キーワードシャープ八幡一・壱・壹逸・一・佚・溢・逸ざらスクエアひよひよぶうぶうぽちぽち

今日のキーワード

信長協奏曲(コンツェルト)

石井あゆみによる漫画作品。戦国時代にタイムスリップした現代の高校生が病弱な織田信長の身代わりとして生きていく姿を描く。『ゲッサン』2009年第1号から連載開始。小学館ゲッサン少年サンデーコミックス既刊...

続きを読む

コトバンク for iPhone

公理の関連情報