コトバンクはYahoo!辞書と技術提携しています。

指数関数 しすうかんすう exponential function

6件 の用語解説(指数関数の意味・用語解説を検索)

ブリタニカ国際大百科事典 小項目事典の解説

指数関数
しすうかんすう
exponential function

ねずみ算などの倍増しの法則を定式化したもので,x を任意の実数とするとき,関数 yax(a>0) を,a を底とする指数関数という。その逆関数を a を底とする対数関数という。指数関数の値は,常に正である。

本文は出典元の記述の一部を掲載しています。

出典|ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

デジタル大辞泉の解説

しすう‐かんすう〔‐クワンスウ〕【指数関数】

aを1でない正の定数とするとき、関数yaxを、aを底(てい)とするxの指数関数という。

出典|小学館 この辞書の凡例を見る
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

百科事典マイペディアの解説

指数関数【しすうかんすう】

aを正の定数,xを実数の変数とする関数a(x/)をいう。特にe(x/)(e自然対数の底)が重要で,この関数は何回微分または積分しても同じ形を保つ。一般の指数関数a(x/)はe(x/) (log/) (a/)と書ける。
→関連項目双曲線関数

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. ご提供する『百科事典マイペディア』は2010年5月に編集・制作したものです

世界大百科事典 第2版の解説

しすうかんすう【指数関数 exponential function】

正の数aの累乗an(an乗)を考えるとき,nを累乗の指数というが,指数の概念を任意の実数xに拡張しaxを以下のように定義する。まず正の有理数rm/n(m,nは正の整数)に対してと定義する。次に任意の実数xに対して,xに収束する有理数列{rn}をとりと定義する。こうしてaxがすべての実数xに対して定義されて,指数法則が成り立つ。 さらに,axxに関して連続的に変化する。すなわちaxx連続関数である。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

大辞林 第三版の解説

しすうかんすう【指数関数】

a を 1 でない正の定数、 x を変数とするとき、y a x の形の関数を、 a を底とする指数関数という。

出典|三省堂
(C) Sanseido Co.,Ltd. 編者:松村明 編 発行者:株式会社 三省堂 ※ 書籍版『大辞林第三版』の図表・付録は収録させておりません。 ※ それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)の解説

指数関数
しすうかんすう
exponential function

a>0, a≠1として、yaxで表される関数で、aを指数関数の底(てい)という。xが1, 2, 3のような自然数のとき、axaの累乗、すなわちax回掛け合わせたものである。
  a1a, a2a×a,
  a3a×a×a,……
x=0については、a0=1と定める。たとえば30=1である。xが負の整数のときは、ax=1/a-xと定める。たとえば、
  10-1=1/10=0.1,
  5-2=1/52=0.04
となる。以上、整数値xについて定められたaxに対して、次の指数法則が成り立つ。
(1)axayax+y
   たとえばa5×a4a9
(2)(ax)yaxy
   たとえば(23)2=26=64
(3)(ab)xaxbx
   たとえば63=(3×2)3
        =33×23
 xが有理数のとき、xn/mnは整数、mは正の整数)として、axanm乗根

と定める。この拡張された指数についても、指数法則はそのまま当てはまる。たとえば、
  82/3=(23)2/3=23×2/3=22=4
 xが実数のときaxを定義するには、次のような考察をする。いまa>1としておく。このとき、有理数x,x′(xx′)について、axax′である。そして、

であるから、実数xに対して、r1, r2,……をxに収束する有理数の列とすれば、

が存在して、この極限値はxのみによって定まり、xに収束する有理数列のとり方にはよらないことがわかる。この値をaxと定める。このようにしてすべての実数xについてaxが定められ、これについても指数法則は成立する。0<a<1のときはax=(1/a)-xと定めればよい。yaxのグラフでは、a>1のとき、axは増加関数で、x=0のときy=1となる。そして、

0<a<1のとき、axは減少関数で、x=0のときy=1、そして、

指数関数の底としては、

である数eを用いることが多い。これは無限級数

の和としても得られる。
  e=2.71828182845904523536……
これを用いると、

指数関数の微分、積分は次のようになる。

ここでlogaaの自然対数である。

xのすべての複素数値に対して収束する級数であるので、これによってexの、指数xを複素数に拡張したときの値を定義する。

と置けば、
  eiθ=cosθ+isinθ
となる。これをオイラーの公式という。一般の
複素数α+iβについては、
  eα+iβ=eα(cosβ+isinβ)
となる。
 exはexpxと書くことも多い。指数関数の定義の仕方について述べておこう。解析教程の多くは、本文のように指数関数を定義したあとに、その逆関数として対数関数を定義して、それらの導関数や積分を調べていくことになっている。しかしながら、有理数の指数の定義(一般の正数についてm乗根の存在をあらかじめ証明しておかなければならない)から出発して実数の指数の定義にまで到達するのには、実数論特有の相当の手間がかかり、厳密な証明はやさしいものではない。一方、対数関数には、

の関係がある。そこで直観的にわかりやすく定積分の議論をある程度済ませたあとで、この積分で逆に対数関数を定義する。こうしても論理的整合性の失われる部分は少ないし、対数関数の満たす関数方程式を、積分の知識から形式的に証明できる。したがって、この形で対数関数を導入して、その逆関数として指数関数を教えるほうがよいという意見も多く、しばしばこの方法が試みられている。[竹之内脩]

出典|小学館 日本大百科全書(ニッポニカ) この辞書の凡例を見る
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

指数関数の関連キーワード累乗根指数法則被覆累乗極限正の数べき根(冪根)Abū'l Ghāzī Bahādur KhānBhaṭṭanārāyaṇaDiaz de la Peña,N.

今日のキーワード

トランスアジア航空

台湾・台北市に本拠を置く航空会社。中国語名は復興航空。1951年、台湾初の民間航空会社として設立。83年に台湾の国産実業グループに経営移管され、組織改編を実施した。92年に国際チャーター便の運航を始め...

続きを読む

コトバンク for iPhone

指数関数の関連情報