コトバンクはYahoo!辞書と技術提携しています。

対数関数 たいすうかんすう logarithmic function

5件 の用語解説(対数関数の意味・用語解説を検索)

ブリタニカ国際大百科事典 小項目事典の解説

対数関数
たいすうかんすう
logarithmic function

a ( a>0 ,a≠1 ) を底とする x の対数 yxay すなわち y= log axxy の間の関数関係と考えたとき,ya を底とする x の対数関数という。対数関数 y= log ax は指数関数 yax の逆関数であり,0<x<+∞ で定義された連続かつ狭義の単調関数である。

本文は出典元の記述の一部を掲載しています。

出典|ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

デジタル大辞泉の解説

たいすう‐かんすう〔‐クワンスウ〕【対数関数】

aを1でない正の数とするとき、xを正の数として、y=logaxで定められる関数。指数関数逆関数

出典|小学館 この辞書の凡例を見る
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典 第2版の解説

たいすうかんすう【対数関数 logarithmic function】

aを1でない正の定数とするとき,任意の正数xに対してayxとなる実数yがただ一つ定まる。このyを,aを底(てい)とするxの対数と呼んでy=logaxと書き,xにlogaxを対応させる関数をaを底とする対数関数という。対数関数y=logaxaを底とする指数関数yaxの逆関数である。 対数関数の導関数を求めるため,と変形する。ここでx/htとおくと,上の式は,となり,x>0だからh→±0のときt→±∞(複号同順)となるが,t→+∞としてもt→-∞としても同じ定数に近づくことが示される。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

大辞林 第三版の解説

たいすうかんすう【対数関数】

a を底とする対数 y =logax において、 x を変数と考えたとき、 y a を底とする対数関数と呼ぶ。指数関数の逆関数である。

出典|三省堂
(C) Sanseido Co.,Ltd. 編者:松村明 編 発行者:株式会社 三省堂 ※ 書籍版『大辞林第三版』の図表・付録は収録させておりません。 ※ それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)の解説

対数関数
たいすうかんすう

変数xにその対数の値を対応させる関数のこと。a(a>0,a≠1)を底とする対数関数をy=logaxで表す。y=logaxとはx=ayのことだから、対数関数は指数関数の逆関数である。y=logaxのグラフは、y=axのグラフを、直線y=xを軸として折り返せば得られる。logaxは、すべての正の実数xについて定義された関数で、loga1=0である。a>1のときは増加関数で、

0<a<1のときは減少関数で、

対数関数について、次の公式が成り立つ。
  logaxy=logax+logay
  logaxk=klogax
  logab・logbc=logac
 a=10、すなわち10を底とする対数を常用対数という。対数の底として10を使うのはわれわれが十進(じっしん)記数法を採用していることによる便宜的なものであり、数学的な根拠があるわけではない。数学では、数eを用いるのが普通である。とくに微分積分法との関連においては、諸公式を簡明にするので自然である。すなわち、

となる。eを底とする対数を自然対数といい、数学では、単にlogxと書けば、eを底とする対数を意味する。これを、自然対数をラテン語で書いたlogarithmus naturalisを略した形でlog nat、あるいはlnと書くこともある。たとえばln(1+x)はloge(1+x)を意味する。
 対数関数の値を計算するとき、次の展開式を利用する。

たとえばlog2は第二の式でx=1/3とすれば求められる。
 常用対数は、スコットランドのネーピアによって1615年ころにみいだされ、その後イングランドのブリッグズによって改良され、一般に用いられるようになった。ケプラーはネーピアからの知らせに驚喜してこれを活用し、有名なケプラーの法則の発見に至る計算をしたという。一方、

という関係は、1650年ころ、ベルギーのサン・バンサンGregorius Saint Vincent(1584―1667)によってその端緒が得られ、17世紀を通じて、だいたい確立された。[竹之内脩]

出典|小学館 日本大百科全書(ニッポニカ) この辞書の凡例を見る
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

対数関数の関連キーワード既約分数指数関数指数法則対数ベッセル関数結合定数ファインマンの定理正の数ド・モアブルの定理ルジャンドル関数

今日のキーワード

トランスアジア航空

台湾・台北市に本拠を置く航空会社。中国語名は復興航空。1951年、台湾初の民間航空会社として設立。83年に台湾の国産実業グループに経営移管され、組織改編を実施した。92年に国際チャーター便の運航を始め...

続きを読む

コトバンク for iPhone

対数関数の関連情報